
ALGOL, More than just ALGOL

HT de Beer

Eindhoven, March 24, 2008

Abstract

The ALGOL 60 report is regarded as ‘highly influ-
ential’. In this article the history of the develop-
ment of ALGOL 60 and its report is told to find
out why this document was so influential.

Introduction

On May 20th, 2006, Peter Naur received the 2005
ACM Turing Award. This award is often regarded
as the “Nobel Prize” in Computer Science. Naur
was rewarded for his ‘pioneering work on defining
the Algol 60 programming language. (...) [He] was
editor in 1960 of the hugely influential ”Report on
the Algorithmic Language Algol 60.” He is recog-
nised for the report’s elegance, uniformity and co-
herence, and credited as an important contributor
to the language’s power and simplicity.’1

More than forty-five years after the publication of
the ALGOL 60 report it is still regarded as ‘hugely
influential’. At the same time the ALGOL 60 pro-
gramming language defined in the report is almost
forgotten. Where other languages defined around
1960 are still in use today, like FORTRAN, LISP
and COBOL, only ALGOL’s legacy is still with us,
the language itself is long gone.

In my Masters thesis on The History of the AL-
GOL Effort2 (2006) I argue that the ALGOL effort
was a catalyst for the transformation of the field of
compiler writing and programming languages into
a scientific field. The ALGOL 60 report was the key

1ACM Pressroom, ‘Software Pioneer Peter Naur
Wins ACM’s Turing Award. Dane’s Creative Genius
Revolutionized Computer Language Design’ (2006),
〈URL: http://campus.acm.org/public/pressroom/press_

releases/3_2006/turing_3_01_2006.cfm〉
2HT de Beer, ‘The History of the ALGOL Effort’,

Master’s thesis, Technische Universiteit Eindhoven (2006),
〈URL: http://www.heerdebeer.org/ALGOL〉

to this transformation and this explains the influ-
ence of the ALGOL 60 report: its scope was much
wider than yet another algorithmic programming
language, it was about the definition of program-
ming languages in general.

It does, however, not explain where the contents
of this report came from. Why was the ALGOL
60 report about more than just ALGOL 60? To
answer this question the origin and development of
ALGOL 60 is described from the start in the middle
of the 1950s till the publication of the ALGOL 60
report in March 1960.

The start of the ALGOL effort

In October 1955, an international symposium on
automatic computing was held in Darmstadt, Ger-
many. In the 1950s, the term “automatic comput-
ing” referred to almost anything related to com-
puting with a computer. During this symposium
‘several speakers stressed the need for focusing at-
tention on unification, that is, on one universal,
machine-independent algorithmic language to be
used by all, rather than to devise several such lan-
guages in competition.’3

To meet this need the Gesellschaft für Ange-
wandte Mathematik und Mechanik (GAMM; as-
sociation for applied mathematics and mechan-
ics) set up a subcommittee for programming lan-
guages. This committee consisted of eight mem-
bers: Bauer, Bottenbruch, Graeff, Läuchli, Paul,
Penzlin, Rutishauser, and Samelson.4 In 1957, it
had almost completed its task; instead of creating

3Heinz Rutishauser, Description of ALGOL 60, vol-
ume 1, edited by F. L. Bauer et al. (Springer-Verlag, 1967),
p. 5

4Peter Naur, Transcripts of Presentations, in: HOPL-1:
The first ACM SIGPLAN conference on History of pro-
gramming languages (New York, NY, USA: ACM Press,
1978), pp. 148, Frame 3

1

http://campus.acm.org/public/pressroom/press_releases/3_2006/turing_3_01_2006.cfm
http://campus.acm.org/public/pressroom/press_releases/3_2006/turing_3_01_2006.cfm
http://www.heerdebeer.org/ALGOL

yet another algorithmic language, however, it was
decided to ‘make an effort towards worldwide uni-
fication.’5

The need for a universal algorithmic language
was not felt only in Europe. Some computer user
organisations in the USA, like SHARE, USE, and
DUO also wanted one standard programming lan-
guage for describing algorithms. In 1957, they
asked the Association of Computing Machinery
(ACM) to form a subcommittee to study such
a language.6 In June 1957, the committee was
formed consisting of fifteen members from the in-
dustry, the universities, the users, and the fed-
eral government: Arden, Backus, Desilets, Evans,
Goodman, Gorn, Huskey, Katz, McCarthy, Orden,
Perlis, Rich, Rosen, Turanski, and Wegstein.7

Before this committee had held any meeting at
all, a letter of the GAMM subcommittee was send
to the president of the ACM to propose a joint
meeting to create one international algebraic lan-
guage8 instead of two different but similar lan-
guages. The ACM agreed and three preparatory
meetings were held in the USA to create a pro-
posal for the language. On the third meeting, held
at Philadelphia, 18 April 1958, F.L. Bauer pre-
sented the GAMM proposal to the ACM subcom-
mittee.9 Both proposals shared many features but
the American proposal was more practical than the
European counterpart that was more universal.10

The IAL meeting at Zürich

From May 27 to June 1, 1958, the proposed joint
meeting was held at Zürich, and was attended by
F.L. Bauer, H. Bottenbruch, H. Rutishauser and
K. Samelson from the GAMM subcommittee and
by J. Backus, C. Katz, J. Perlis and J.H. Wegstein
from the ACM counterpart. Although Bauer stated

5Rutishauser, Description of ALGOL 60 , p. 5
6R. W. Bemer, ‘A Politico-Social History of Algol’, in:

Mark I. Halpern and Christopher J. Shaw, editors, Annual
review in automatic programming, volume 5 (London: Perg-
amon, 1969), p. 160

7Alan J. Perlis, The American side of the development
of Algol, in: HOPL-1: The first ACM SIGPLAN conference
on History of programming languages (New York, NY, USA:
ACM Press, 1978), pp. 4–5

8Bemer, ‘A Politico-Social History of Algol’, p. 160
9Perlis, ‘The American side of the development of Algol’,

p. 5
10Rutishauser, Description of ALGOL 60 , p. 5

in his letter to the ACM that the GAMM subcom-
mittee hoped ‘to expand the circle through repre-
sentatives from England, Holland and Sweden’11,
the joint meeting was attended by Americans, Ger-
mans and Swiss only. Nonetheless, international
interest was growing, especially after the publica-
tion of the preliminary report on the new language
in 1958.12

The discussions at the Zürich meeting were based
on the two proposals for the new language and it
was decided that:

1. ‘The new language should be as close as possi-
ble to standard mathematical notation and be
readable with little further explanation.

2. It should be possible to use it for the descrip-
tion of computing processes in publications.

3. The new language should be mechanically
translatable into machine programs.’13

In addition, the language was to be machine inde-
pendent: it was supposed to be designed with no
particular machine in mind.

Creating a language with these goals seemed a
bit problematic: character sets available in hard-
ware were much more limited than needed in pub-
lications. In addition, there was an international
disagreement on the symbols to use. For exam-
ple, the decimal point was problematic: the Amer-
icans were used to a period and the Europeans to a
comma.14 To solve all these representational issues
Wegstein proposed to define the language on three
different levels of representation: reference, hard-
ware and publication. With this ‘master stroke’15

the joint meeting ended successfully with the pub-
lication of the Preliminary Report: International
Algebraic Language,16 IAL was born.

Compared to other early algorithmic program-
ming languages, like FORTRAN, IT, and MATH-
MATIC, IAL did have some distinctive character-
istics: it was designed by two committees at a joint

11Bauer in: Bemer, ‘A Politico-Social History of Algol’,
p. 161

12Rutishauser, Description of ALGOL 60 , p. 6
13A. J. Perlis and K. Samelson, ‘Preliminary Report:

International Algebraic Language’, Commun. ACM 1:12
(1958), p. 9

14Perlis, ‘The American side of the development of Algol’,
p. 6

15Ibid.
16Perlis and Samelson, ‘Preliminary report: IAL’

2

meeting, it was the result of an international effort,
and it was designed to be machine independent.
On the other hand, IAL shared many features with
these early algorithmic languages. There was a
general agreement on what features an algorithmic
language should contain: variables, assignment, ex-
pressions, selection, iteration, and maybe some sort
of procedure concept.

Despite different backgrounds, the proposals
from the GAMM subcommittee and the ACM sub-
committee were similar. Nevertheless, because of
these different backgrounds, the two subcommit-
tees did have different goals with the new language.
The Europeans wanted a language for numerical
work that could be implemented and run on Eu-
ropean computing machines.17 Creating IAL was
their first effort to create an higher level program-
ming language and they tried to create a universal
language from scratch.

The Americans, on the other hand, did have ex-
perience with the development and use of algo-
rithmic programming languages. In fact, the ex-
istence of many similar but different algorithmic
programming languages in the USA was the rea-
son the ACM subcommittee was set up in the first
place: they wanted to create a standard capturing
all these different languages. Furthermore, they
hoped that by developing this standard language
they would get new insights in programming lan-
guages.18

The combination of these different perspectives
resulted in a language where ‘the central ideas [of
earlier languages] were captured in general and ele-
gant constructions – types, compound statements,
conditionals, loops, switches and procedures.’19 In
other words IAL 58 became a standard denoting
the state of algebraic programming languages of the
late 1950s.

The development of ALGOL 60

The preliminary report on the international alge-
braic language spawned some new language efforts.

17Alan J. Perlis, Transcripts of Presentations, in: HOPL-
1: The first ACM SIGPLAN conference on History of pro-
gramming languages (New York, NY, USA: ACM Press,
1978), p. 141

18Ibid., pp. 140–141
19Idem, ‘The American side of the development of Algol’,

p. 7

In the USA, the report was taken and used as a
set of guidelines to create new algebraic languages
like NELIAC, MAD, and JOVIAL.20 Furthermore,
the development of IAL was continued in both the
subcommittee of the ACM and the subcommittee
of the GAMM. Meanwhile, the name of the lan-
guage was changed from the ‘”unspeakable” and
pompous acronym, IAL’21 to ALGOL.

The focus of the Americans was mainly on prac-
tical aspects of the language. They wanted to im-
prove the language by extending it, by adding more
types, and by adding input and output facilities.
Another suggestion to improve the language was to
tidy up the syntax a bit.22 This practical attitude
to the ALGOL effort was a result of the state of pro-
gramming in the USA: programming was becoming
a professional field and the experience gained with
existing programming languages provided a good
feedback to the ALGOL effort.

In Europe, the GAMM subcommittee continued
with the further development of the ALGOL lan-
guage. Soon, however, after two meetings where
the implementation of ALGOL was discussed, in
Mainz, November 1958, and in Copenhagen, Febru-
ary 1959, the ALGOL effort became a truly interna-
tional effort. Interested people from different back-
grounds and different countries in Europe were in-
vited to take part in the discussions on ALGOL.23

The discussions on ALGOL were documented in
the newly founded ALGOL Bulletin edited by Pe-
ter Naur. This formal discussion channel was im-
portant to synchronise and to focus the discussions.
During the development of ALGOL the number of
different participants in the European part of the
ALGOL effort had grown to include almost 50 cen-
tres and 74 persons;24 management of the discus-
sions was needed to enable meaningful participa-
tion, hence the influence of the ALGOL Bulletin.

In Europe, the procedure concept and the scopes
of variables were the most discussed topics.25 The
Europeans aimed to improve the language funda-

20Ibid., p. 8
21Ibid., p. 6
22Idem, ‘Transcripts of Presentations’, p. 144
23Peter Naur, The European side of the last phase of the

development of ALGOL 60, in: HOPL-1: The first ACM
SIGPLAN conference on History of programming languages
(New York, NY, USA: ACM Press, 1978), p. 19,20

24Ibid., p. 34,35
25Perlis, ‘The American side of the development of Algol’,

p. 9

3

mentally and the main target was the complex pro-
cedure concept in ALGOL 58. The discussions on
the procedure concept focused mainly on param-
eters. During these discussions, both in Amer-
ica and in Europe, all facets of ALGOL were dis-
cussed, from simple syntactical improvements to
implementation and fundamental changes in the
language.

Backus’s notation

Meanwhile, at the UNESCO International Con-
ference on Information Processing, held at Paris
from 15 till 20 June 1959, J.W. Backus presented
The syntax and semantics of the proposed inter-
national algebraic language of the Zürich ACM-
GAMM Conference26 about a formal description
of the syntax of ALGOL 58. To be able to describe
the syntax formally he invented a new metalan-
guage based on Emile Post’s production system.27

This notation became known as the Backus Normal
Form and later as the Backus Naur Form,28 it is,
however, best known by its abbreviation BNF.

Backus started working on this notation because
‘there must exist a precise description of those se-
quences of symbols which constitute legal [IAL]
programs (...) [and] heretofore there has existed no
formal description of a machine-independent lan-
guage’.29 Because of the nature of the ALGOL
effort a formal notation was needed to properly
discuss and define the language: everyone involved
in ALGOL should interpret the language the same
way for ALGOL to be universal.

The notation used to describe early programming
languages like FORTRAN and IAL was natural lan-
guage combined with some patterns denoting the
form of the various language elements. In Figure 1,
the definition of arithmetic expressions in the IAL
report is given. In this definition the symbol ∼

26John W. Backus, The syntax and semantics of the pro-
posed international algebraic language of the Zurich ACM-
GAMM Conference., in: IFIP Congress (1959)

27John Backus, ‘Programming in America in the 1950s –
Some Personal Impressions’, in: N. Metropolis, J. Howlett
and Gian-Carlo Rota, editors, A History of Computing in
the twentieth century (Academic Press, 1980), p. 132

28Donald E. Knuth, ‘backus normal form vs. Backus Naur
form’, Commun. ACM 7:12 (1964), p. 736

29Backus, ‘The syntax and semantics of the proposed in-
ternational algebraic language of the Zurich ACM-GAMM
Conference.’, p. 129

Arithmetic expressions E are defined as follows:

a A number, a variable (other than Boolean), or a function
is an expression.
Form: E∼N ∼V ∼F

b If E1 and E2 are expressions, the first symbols are neither
”+” nor ”−”, then the following are expressions:

E ∼ + E1 ∼ E1× E2

∼ − E1 ∼ E1/ E2

∼ E1+ E2 ∼ E1 ↑ E2 ↓
∼ E1− E2 ∼ (E1)

The operators +, −, ×, / appearing above have the
conventional meaning. The parentheses ↑↓ denote
exponentiation, where the leading expression is the
base and the expression enclosed in parentheses is the
exponent.

Figure 1: The definition of arithmetic expressions
in the IAL report (From: Perlis and Samelson,
Preliminary Report – International Algebraic Lan-
guage, pp. 12–13)

symbol is undefined but the meaning of this sym-
bol is clear: on the right-hand side of the ∼ symbol
all possible forms the left-hand side element can
take are listed. In this example, all forms an arith-
metic expression can take are listed, from a sim-
ple number, N, to a combination of subexpressions
combined with an operator, like E1× E2.

The disadvantage of this notation was that it re-
sulted in ambiguous descriptions. Even for simple
language elements, like numbers, expressions, and
simple control structures, this was problematic. For
definition of complex structures, like the procedure
statement and declarations, the notation was insuf-
ficient.

Using Backus’s notation, however, the syntax
of a language could be described by “production
rules”. Each rule was of the shape <metalinguistic
variable> :≡ pattern. A pattern was built up from
metalinguistic variables and symbols of the lan-
guage. All possible patterns for a metalinguistic
variable were connected with the or symbol, denot-
ing a choice between the different patterns for the
metalinguistic variable.

As an example of the use of Backus’s notation,
again the syntax of arithmetic expressions, is given
in Figure 2. Comparing Figure 1 with Figure ??, it
is immediately clear that the latter is a less ambigu-
ous description than the former description. Using

4

〈factor〉 :≡ 〈number〉 or 〈function〉 or 〈variable〉 or
〈subscr var〉 or (〈ar exp〉) or 〈factor〉 ↑ 〈ar
exp〉 ↓

〈term〉 :≡ 〈factor〉 or 〈term〉 × 〈factor〉 or 〈term〉 /
〈factor〉

〈ar exp〉 :≡ 〈term〉 or + 〈term〉 or − 〈term〉 or 〈ar exp〉
+ 〈term〉 or 〈ar exp〉 − 〈term〉

〈ar exp A〉 :≡ 〈ar exp〉
〈relation〉 :≡ < or > or ≤ or ≥ or = or 6=
〈rel exp〉 :≡ (〈ar exp〉 〈relation〉 〈ar exp A〉)

Figure 2: The formal definition of arithmetic ex-
pressions using Backus’s notation. (From: Backus,
The syntax and semantics of the proposed inter-
national algebraic language of the Zurich ACM-
GAMM Conference, p. 130)

his notation Backus was able to denote the oper-
ator precedence by splitting up the description of
expressions into different parts: factors, terms and
expressions.

The new notation was an huge improvement over
the one used earlier. Nonetheless, it was improved
even further by Peter Naur, replacing or by | and
:≡ by ::=. With these small improvements, and
with the use of complete words for metalinguistic
variables instead of using abbreviations of the same
words, as Backus did, Naur improved the readabil-
ity of the description.30 In Figure 3 the definition
of the syntax of arithmetic expressions in the AL-
GOL 60 report using the BNF is given. This nota-
tion and description is similar with Backus’s earlier
description.

Peter Naur’s draft

After a last meeting in December at Mainz of the
European part of the ALGOL effort, Peter Naur
wrote a draft of the language discussed at this meet-
ing to prepare himself for Paris. With this highly
structured document and describing the syntax us-
ing a slightly changed version of Backus’s notation,
the BNF, Naur wanted to convince the members of
the ALGOL 60 committee to use his notation or a
similar formal notation.

Naur’s changes to Backus’s notation were not
fundamental. The important contribution of Pe-

30Backus, ‘Programming in America in the 1950s – Some
Personal Impressions’, p. 133

<adding operator> ::= + | −
<multiplying operator> ::= × | / | ↑
<primary> ::= <unsigned number> | <variable> | <function

designator> |
(<arithmetic expression>)

<factor> ::= <primary> | <factor> ↑ <primary>

<simple arithmetic expression> ::= <term> | <adding

operator><term> |
<simple arithmetic expression><adding operator><term>

<if clause> ::= if <Boolean expression> then

<arithmetic expression> ::= <simple arithmetic expression> |
<if clause><simple arithmetic expression> else <arithmetic

expression>

Figure 3: The definition of arithmetic expressions
in the ALGOL 60 report using the BNF. (From:
Naur, ed., Report on the Algorithmic Language AL-
GOL 60, p. 17)

ter Naur to Backus’s notation was his use of it in
the ALGOL 60 report.31 Only after the publica-
tion of that report the BNF became more widely
known. Before the publication of the ALGOL 60 re-
port Backus’s notation ‘was received with a silence
that made it seem that precise syntax description
was an idea whose time had not yet come’.32 Naur
‘thus proved the usefulness of the idea in a widely
read paper and it was accepted’.33

Although Naur thought that there would be a
problem with ‘making the ALGOL committee ac-
tually use this [Backus] notation and the precise
prose formulations that would have to go along with
it’34 the use of a better notation to describe pro-
gramming languages was not a controversial topic.
According to Bauer ‘there was no question that we
[Bauer, Rutishauser, and Samelson] would like for
the outcome of the Paris Conference a form similar
to the one Backus had used for [his] ICIP paper
(some of us had been quite familiar with equivalent
formulations in mathematical logic even before and
did see the notational advantages.)’35

31Knuth, ‘backus normal form vs. Backus Naur form’,
p. 736

32Backus, ‘Programming in America in the 1950s – Some
Personal Impressions’, p. 133

33Ibid.
34Naur, ‘European side of development of ALGOL 60’,

p. 20
35Bauer cited in Naur, 1978, p. 41

5

On the fourth day of the Paris meeting, Peter
Naur’s draft36 was “chosen” as the basis for the
discussions and hence as the basis for the new lan-
guage. As a result, Peter Naur was also “invited”
to be the editor of the final report.37 Bauer, on the
other hand, is less positive over the choice made at
the meeting to use Naur’s draft and appoint him as
the editor: ‘Peter Naur had not been commissioned
to do so, it was a fait accompli. It therefore sounds
poetic (...) that his draft was “chosen” as the ba-
sis of the discussions; the Committee was simply
forced to do so.’38

Notwithstanding these issues, Naur’s draft was
used as the basis of the final discussions at the
ALGOL 60 meeting and Naur became the editor
of the final report. As a result, Naur’s draft and
the ALGOL 60 report were similar of structure and
content. After an introduction of ALGOL and the
BNF, groups of different programming language
elements were described using a general pattern:
first, the syntax is defined using the BNF, then
some examples are given, and finally, the seman-
tics are treated.

This structure was adopted in the ALGOL 60 re-
port. Actually, most of the prose and definitions in
the draft were copied almost exactly into the final
report. Of course, during the ALGOL 60 meet-
ing in Paris the language and the description were
changed here and there to reflect the discussions.
Although the draft was copied for a large part, the
final report contained much more than included in
the draft: in the draft the more controversial as-
pects of the language were not defined, or would
be changed, or even removed.

Naur did not define the if-statement, the for-
statement, the alternate statement, and the do-
statement. He did define input and output state-
ments which would not appear in the final report.
Furthermore, the switch declaration was not in-
cluded and the procedure declaration was incom-
plete. Finally, the procedure statement became a
highly discussed topic at the ALGOL 60 meeting
and the differences between Naur’s version and the
final version are large.

36Idem, ‘ALGOL 60 Draft Report, 1960 January 9 [Regne-
centralen, Copenhagen]’, in: Peter Naur, editor, Computing,
a Human Activity (ACM Press, 1992)

37Idem, ‘European side of development of ALGOL 60’,
p. 21

38Bauer cited in Naur, 1978, p. 41

Naur’s draft set the example for the structure,
the use of the BNF, and the definition of simple
language elements. The draft was a sound foun-
dation for the ALGOL 60 meeting: many minor
issues were covered by the draft and the partici-
pants of the meeting could focus on the complex
and controversial programming language elements.
Of course, by having such a structured and com-
plete foundation, the discussions on those complex
elements were influenced by the structure and the
use of the BNF in Naur’s draft.

While both Backus and Naur thought that the
new notation was something too controversial, it
did not appear to be a problem at all for those
present at the Paris meeting. The new notation was
far more suitable for language definition than the
one used earlier. Backus’s notation or the BNF was
the one available, more so because Peter Naur had
written a draft using the BNF for the Paris meeting
as part of his ’“plan” to make an appeal to the
members of the ALGOL Committee concerning the
style of the language description’.39 The notation
was available, it was meaningful to use, and hence,
it was used.

Although the development of the BNF had not
been a goal of the ALGOL effort, its development
and use had an enormous impact on ALGOL 60.
And through this use of the BNF, however, the AL-
GOL 60 report was not only about ALGOL 60 any
more. In section 1.1 of the ALGOL 60 report, titled
formalism for syntactic description, the BNF is in-
troduced. The rest of the report, the definition of
ALGOL 60, can also be seen as the prime example
of the use and power of the BNF. Suddenly the AL-
GOL 60 report was not about yet another algebraic
programming language, it was about a whole set of
programming languages; it was about all languages
that could be described using the BNF. The no-
tional power of the BNF and its implications for the
field of translator writing and programming lan-
guages were only to appear after the publication of
the ALGOL 60 report.

What would have happened if Backus did not in-
vent his notation or Naur did not prepare his draft
for the ALGOL 60 meeting? This question can not
be answered, of course. Still, it is unlikely that AL-
GOL 60 would have been defined using a notation
more formal than the one used in the ALGOL 58

39Bauer cited in Naur, 1978, p. 41

6

report. The most influential aspects of ALGOL 60,
the use of the BNF and the structure of the report,
were more or less a coincidence. It is most supris-
ing how the work and idea’s of John Backus and
Peter Naur were able to have such an enormous
impact on the shaping of the field of programming
languages.

The ALGOL 60 meeting at
Paris

From January 11 till January 16, 1960 the joint AL-
GOL 60 meeting was held in the Hotel des Londres
in Paris, hosted by IBM World Trade Europe.40

According to Perlis (1978), ‘The meetings were ex-
hausting, interminable, and exhilarating. (...) dili-
gence persisted during the entire period, The chem-
istry of the 13 was excellent. (...) Progress was
steady and the output, Algol60, was more race-
horse than camel.’41 Instead of ‘just adding a few
corrections to ALGOL 58, it was necessary to re-
design the language from the bottom up.’42During
the meeting, several complex issues were discussed
in subcommittees which, after completion of their
work, reported to the whole committee.

One of the main topics at the Paris meeting was
the complex concept of the procedure. Known and
new problems of this concept were resolved by var-
ious subcommittees. First, the distinction between
input and output parameters was removed.43 This
solved a number of problems but not all of them.
Eventually, under great time pressure, the distinc-
tion between call-by-name (enabling the so-called
Jensen’s device) and call-by-value was invented.44

When a procedure f with one call-by-value pa-
rameter x is called with argument m, a variable
with value 3, all occurrences of x in the body of
f are replaced with the value of m, in this case
3. The call-by-value parameter concept in ALGOL
60 is similar with the parameter concept in math-
ematical functions: sin(m+3) is computed by first
computing the value of m + 3 and then applying
the function sin on that value.

40Perlis, ‘The American side of the development of Algol’,
p. 11

41Ibid., pp. 11–12
42Rutishauser, Description of ALGOL 60 , p. 7
43Naur, ‘Transcripts of Presentations’, p. 147
44Ibid., pp. 157–158

If procedure f is adapted to have only one call-
by-name parameter, y, and it is, again, called with
argument m, all occurrences of y in the body of f
are replaced with m. That is, not the value of m is
substituted into the body, but m itself. Because an
argument can be everything from a simple number
up to a complex expression, using call-by-name pa-
rameters can result in programs which are difficult
to understand. Through a call-by-name parameter
an variable can be changed outside of its natural
scope. As a result, this call-by-name parameter
concept was one of the most controversial features
of ALGOL 60.

Another issue at the Paris meeting was recursion.
Recursive procedures were new in 1960 and their
usefulness was not widely recognised. The proposal
to add the recursive keyword to the language to
denote a recursive procedure was rejected.45 It is
unclear, however, if recursion as such was rejected,
or that only the use of the keyword recursive was
rejected.46

Nevertheless, in the report resulting the the AL-
GOL 60 meeting, recursion was not mentioned at
all, it was not explicitly forbidden, nor described
explicitly as a feature in the language. Through
the definition of the procedure concept, however,
‘recursiveness [was] almost the obvious thing, be-
cause you have access from inside the body to any-
thing outside [including] the possibility of [a] re-
cursive call.’47 After the ALGOL 60 meeting, van
Wijngaarden en Dijkstra in Amsterdam did see the
implication of this definition of the procedure con-
cept and asked Naur by phone to add to the final
report that recursive calls were possible.48 Accord-
ing to Bauer (1978), this was the result of ‘the Am-
sterdam plot in introducing recursivity.’49

As said before, on the fourth day, Naur’s draft
was chosen as the basis for the final language and
Naur decided on how to proceed during the rest
of the meeting.50 The meeting now continued by
first reading and discussing complete parts of the
language without changing it. Then, in the next
phase, every member would write down the changes

45Perlis, ‘Transcripts of Presentations’, p. 159
46Naur, ‘Transcripts of Presentations’, p. 160
47Ibid., p. 159
48Ibid.
49Bauer cited in Naur, 1978 p. 160
50Idem, ‘European side of development of ALGOL 60’,

p. 21

7

he proposed in a form similar to the form used
in the draft. After collecting these proposals, the
whole committee voted on them successively.51 At
the end of the meeting an almost complete report
was ready for the final editing by Peter Naur.

However, twelve hours after the meeting ended,
Naur thought that he had found some inconsisten-
cies in the procedure concept. To solve these is-
sues, the discussions were continued by mail. It
appeared that the topic was truly controversial: ac-
cepted proposals were not understood (but by the
author) and rejected proposals seemed to be the
only coherent alternatives. Fortunately, one of the
proposals made by mail solved the problem. In
February the last changes were made to enable re-
cursivity and some example programs were added
too. Finally, at 2 March 1960, the final report was
published.52

The Report on the Algorithmic Language AL-
GOL 60 ‘was a fitting display for the language.
Nicely organised, tantalisingly incomplete, slightly
ambiguous, difficult to read, consistent in format,
and brief, it was a perfect canvas for a language that
possessed those same properties. Like the Bible it
was meant, not merely to be read, but to be inter-
preted.’53 At that time, the formal notation used
in the ALGOL 60 report was frightening many peo-
ple at first. Nevertheless, the way ALGOL 60 was
defined in this report would become the standard
for defining programming languages.

ALGOL, more than just AL-
GOL

Now that the story of the development of ALGOL
60 is told, it is time to answer the question why
the ALGOL 60 report was about more than just
ALGOL 60. The introduction and use of the BNF
by Backus and Naur is an important part of the
answer. Without it, it is doubtful if the ALGOL
60 report would have had the same impact, or if
ALGOL 60 itself would have been as structured
and balanced as it was.

The use of the BNF is not the whole answer, a
good idea alone is not enough. Remember, initially

51Ibid., p. 1
52Ibid., pp. 29–30
53Perlis, ‘The American side of the development of Algol’,

p. 12

the BNF, or Backus’s notation, did not gain much
attention. The same could have happened to the
ALGOL 60 report, but for the nature of the AL-
GOL effort. ALGOL 60 was not yet another pro-
gramming language, it was aspired to be the new
universal and international algebraic programming
language; it was born to great expectations.

The other part of the answer why ALGOL was
more than ALGOL lies with the nature of the AL-
GOL effort. It was an international effort, combin-
ing scientists of two worlds working together on one
common goal: to define a programming language
close to mathematics, a language for use in publi-
cations, a language that was machine translatable,
and a language that was machine independent. The
first and the third goal were common goals for other
algebraic language efforts, the other two goals were
not. The initial result, ALGOL 58 was a standard
denoting the state of algebraic programming lan-
guages in the late 1950s. It was a perfect start for
a new language, it was a perfect start for further
discussions on programming languages.

During 1959 ALGOL was discussed among a
growing number of interested people and the AL-
GOL effort became a truly international effort. The
result of these discussions was put together at the
joint ALGOL meeting in Paris, 1960: ALGOL 60.
Where ALGOL 58 denoted the state of algebraic
programming in the late 1950s, ALGOL 60 was
something new. With new or improved program-
ming language concepts like the block, recursion,
and procedures and with a clean and structured
syntax, ALGOL 60 started a new generation of pro-
gramming languages.

Suddenly ALGOL became a popular topic, and,
as a result, the ALGOL 60 report was read by an
huge number of interested people from all over the
world. The ALGOL effort was the perfect band-
wagon for the spread of new ideas like the BNF
and a programming language like ALGOL 60. It
became the bandwagon of the field of translator
writing and programming languages and the AL-
GOL 60 report became the key to the transforma-
tion of that field from a craftsmanship into a scien-
tific field.

References

Backus, John, ‘Programming in America in the

8

1950s – Some Personal Impressions’, in:
Metropolis, N., Howlett, J. and Rota, Gian-
Carlo, editors, A History of Computing in the
twentieth century (Academic Press, 1980),
pp. 125–135.

Backus, John W., The syntax and semantics of
the proposed international algebraic language
of the Zurich ACM-GAMM Conference., in:
IFIP Congress (1959), pp. 125–131.

Beer, HT de, ‘The History of the ALGOL Ef-
fort’, Master’s thesis, Technische Univer-
siteit Eindhoven (2006), 〈URL: http://www.
heerdebeer.org/ALGOL〉.

Bemer, R. W., ‘A Politico-Social History of Al-
gol’, in: Halpern, Mark I. and Shaw, Christo-
pher J., editors, Annual review in automatic
programming, volume 5 (London: Pergamon,
1969), pp. 151–237.

Knuth, Donald E., ‘backus normal form vs. Backus
Naur form’, Commun. ACM 7:12 (1964),
pp. 735–736.

Naur, Peter, The European side of the last phase of
the development of ALGOL 60, in: HOPL-1:
The first ACM SIGPLAN conference on His-
tory of programming languages (New York,
NY, USA: ACM Press, 1978), pp. 15–44.

Naur, Peter, Transcripts of Presentations, in:
HOPL-1: The first ACM SIGPLAN confer-
ence on History of programming languages
(New York, NY, USA: ACM Press, 1978),
pp. 147–161.

Naur, Peter, ‘ALGOL 60 Draft Report, 1960 Jan-
uary 9 [Regnecentralen, Copenhagen]’, in:
Idem, editor, Computing, a Human Activity
(ACM Press, 1992), pp. 67–88.

Perlis, A. J. and Samelson, K., ‘Preliminary
Report: International Algebraic Language’,
Commun. ACM 1:12 (1958), pp. 8–22.

Perlis, Alan J., The American side of the develop-
ment of Algol, in: HOPL-1: The first ACM
SIGPLAN conference on History of program-
ming languages (New York, NY, USA: ACM
Press, 1978), pp. 3–14.

Perlis, Alan J., Transcripts of Presentations, in:
HOPL-1: The first ACM SIGPLAN confer-
ence on History of programming languages
(New York, NY, USA: ACM Press, 1978),
pp. 139–147.

Pressroom, ACM, ‘Software Pioneer Peter Naur
Wins ACM’s Turing Award. Dane’s Creative
Genius Revolutionized Computer Language
Design’ (2006), 〈URL: http://campus.acm.
org/public/pressroom/press_releases/
3_2006/turing_3_01_2006.cfm〉.

Rutishauser, Heinz, Description of ALGOL 60, vol-
ume 1, edited by Bauer, F. L. (Springer-
Verlag, 1967).

9

http://www.heerdebeer.org/ALGOL
http://www.heerdebeer.org/ALGOL
http://campus.acm.org/public/pressroom/press_releases/3_2006/turing_3_01_2006.cfm
http://campus.acm.org/public/pressroom/press_releases/3_2006/turing_3_01_2006.cfm
http://campus.acm.org/public/pressroom/press_releases/3_2006/turing_3_01_2006.cfm

