
Technische Universiteit Eindhoven
Eindhoven School of Education

The Characteristics of Pedagogical Content
Knowledge of Teachers Teaching an Introductory

Programming Course

by

Huub de Beer

supervisors:

J. Perrenet
M. Saeli

Eindhoven, August 1, 2009

Contents

Abstract

This study captures part of the pedagogical content knowledge of pro-
gramming of teachers teaching a introductory programming course by
means of Context Representations (CoRe). The result of this study are
two categorised lists of “Big Ideas” of teaching a first programming course
and a CoRe about four of these “Big Ideas”. Another characteristic of
PCK of programming is the focus on practicality. All respondents agreed:
one learns to program by programming. The respondents’ teaching prac-
tices reflect this focus on practicality through examples, exercises, assign-
ments, course materials, and so on. Furthermore, programming as taught
in an first programming course in higher education differs from program-
ming taught in secondary education although both introduce the subject
programming.

Contents

1 Introduction 2

2 Theory 3
2.1 Programming . 3
2.2 Pedagogical Content Knowledge 3

3 Research questions 4

4 Method 5
4.1 Respondents . 5
4.2 Procedure . 6
4.3 Instruments . 6

5 Results 7
5.1 Compiling “Big Ideas”: Results 7
5.2 Compiling the CoRe: Results . 10
5.3 The characteristics of PCK of teachers teaching a first program-

ming course . 11
5.4 Relation to programming in the Examenprogramma 12
5.5 Relation of the characteristics to the background of the teachers 13

6 Discussion 13

Notes 14

References 14

Appendices 16

A CoRe of structured group discussion I: Array and Iteration 16

B CoRe of structured group discussion II: Expression and Vari-
able 17

C Invitation Workshop 20

1

1 Introduction

1 Introduction

Computer science is a relatively new subject in secondary education in the
Netherlands. Only since the late 1990s the subject is taught in secondary ed-
ucation. At the same time the Consortium Omscholing Docenten Informati-
ca (CODI) retrained 336 experienced teachers to become a computer science
teacher (Schmidt, 2007, 18).

Programming is a substantial part of the secondary computer science edu-
cation curriculum. Although the CODI trained teachers teach programming for
over ten years now, almost nothing is known about how they teach program-
ming. In other words the pedagogical content knowledge (PCK) of computer
science teachers is largely unknown. With this research project I try to de-
termine part of the PCK of programming of Dutch computer science teachers.
The main research question is: What are the characteristics of PCK of teachers
teaching an introductory programming course?

Initially my research plan focused on Dutch secondary computer science
teachers. Unfortunately most respondents did not have any experience with
teaching computer science in secondary education. As a result this research
will be broader in scope to include computer science teachers on all levels of
education. In the discussion, however (See Section 6), the focus will be again
on programming in secondary education.

After the CODI retraining was finished, no new secondary computer science
teachers were educated until 2006 when the three universities of technology in
the Netherlands started the Master of Computer Science Education. As said
before, almost next to nothing is known about the PCK of programming of
Dutch secondary computer science teachers. Internationally the situation is not
much better. To fill in this hiatus, Mara Saeli started in 2008 a PhD project on
PCK in computer science teaching practices (Saeli, 2008). I collaborated with
her in this small research project on the Dutch situation. During my research
she also acted as one of my supervisors.

Because almost nothing is known about the PCK of programming of Dutch
secondary computer science teachers this research is relevant for teachers and
teacher educators alike. Computer science teachers will be able to reflect on
their own teaching practice and strengthen their own PCK with the results
of this research. Teacher educators can use this research to discuss teaching
programming with their students on a more objective level than to base these
discussions on their own and students’ experiences with programming and pro-
gramming education. The results of this research can be used to improve teacher
education and/or change policy about secondary computer science education in
the Netherlands.

Furthermore, computer science in secondary education in the Netherlands is
set up to be suited for all students, culture and science minded students alike. As
a result, secondary computer science has no entry requirements. There is even
no requirement to have successfully finished computer science in secondary edu-
cation to start a computer science related higher education. Both programming
in secondary education as introductory programming courses in higher educa-
tion try to introduce students to the subject of programming. Nonetheless, a
difference between the two is to be expected.

Before continuing with the specific research questions, two important con-

2

2 Theory

cepts are explained first: programming and PCK. Then, after the research ques-
tions, the method used to gather and analyse data is explained. Following the
analysis the research questions will be answered. Finally the results are dis-
cussed.

2 Theory

2.1 Programming

In this research the definition of “programming” as given in the Examenpro-
gramma informatica havo/vwo (Exam program for secondary computer science
education set by the Dutch government) (Schmidt, 2007, 43–45) is used. In the
Examenprogramma, the word “programmeren” (programming) is never used
explicitly. However, it states that: “the student knows and is able to ap-
ply simple data types, programming structures, and programming techniques”
(Schmidt, 2007, 44, translated from Dutch by the author) Schmidt interprets
this as the student being able to write a simple web application (Schmidt, 2007,
20). Furthermore knowledge of the system development process is also men-
tioned (Schmidt, 2007, 45).

Although this definition applies to programming education in secondary ed-
ucation and not to introductory programming courses in higher education, this
definition is used to make a connection from programming in higher education
to programming in secondary education. A first programming course in higher
education is either the start of a range of programming related courses or the
only course on programming, depending on the discipline. One would expect
that programming in the latter case is comparable to programming in secondary
education: programming is an important, but secondary subject. Whereas in
the former case, programming is a primary subject.

2.2 Pedagogical Content Knowledge

In 1985 Lee Shulman coined the term pedagogical content knowledge (PCK)
(Turner-Bisset, 1999, 41). He observed a gap between content knowledge and
pedagogy and introduced a new category of knowledge, pedagogical content
knowledge, to fill that gap. He defined PCK as going “beyond knowledge of
subject matter per sé to the dimension of subject matter knowledge for teach-
ing.” (Shulman, 1986, 9).

He then continues to include “for the most regularly taught topics in one’s
subject area, the most useful forms of representation of those ideas, the most
powerful analogies, illustrations, examples, explanations, and demonstrations.

(. . .)
[PCK] includes an understanding of what makes the learning of specific

topics easy or difficult: the conceptions and preconceptions that students of
different ages and backgrounds bring with them to the learning of those most
frequently taught topics and lessons. If those preconceptions are misconceptions
(. . .) teachers need knowledge of the strategies most likely to be fruitful in
reorganizing the understanding of learners.” (Shulman, 1986, 9–10)

PCK is an intrinsic part of teachers’ experience and often tacit in nature
(Loughran, Berry, & Mulhall, 2007; Baxter & Lederman, 1999). Teachers often

3

3 Research questions

do not have the means or experience to articulate the ideas, decisions, actions,
etc. underlying their teaching practice that constitutes their PCK (Baxter &
Lederman, 1999). As a result determining teachers’ PCK is difficult.

Furthermore, PCK as a concept is ill-defined (Loughran, Milroy, Berry, &
Gunstone, 2001; Loughran, Mulhall, & Berry, 2004; Loughran et al., 2007;
Gess-Newsome, 1999). Or, as Gess-Newsome put it, “PCK has fuzzy bound-
aries” (Gess-Newsome, 1999, 10). Since the introduction of the concept, many
a researcher has used the concept. Thereby often changing the meaning of the
concept to include extra or different knowledge categories. Turner-Bisset takes
it to the extreme and sees PCK as the superset containing all other knowledge
categories for teaching a specific subject (Turner-Bisset, 1999).

Nevertheless, the PCK concept is useful and accepted as such (Loughran et
al., 2001). Two observations: experienced teachers have more PCK than inex-
perienced teachers; and an experienced teacher in one area switching to another
area will create more easily PCK in the new area than an inexperienced teacher
(Sanders, Borko, & Lockard, 1993). The CODI trained secondary computer
science teachers fall into this last category.

As said before, determining teachers’ PCK is difficult. Over the years dif-
ferent methods of determining PCK have been developed and used. These
methods range from questionnaires, concept mapping, interviewing and obser-
vation. Most often, however, researchers combine different methods to deter-
mine teachers’ PCK (Baxter & Lederman, 1999). Although time consuming,
these multi-methods have the potential to capture the vague concept PCK best.

In this study the original definition of the concept PCK as given by Shulman
in 1986 is used. Later alterations, limits or extensions of the concept do not
change the underlying idea of the concept: teachers’ knowledge about how to
teach a subject best. The goal of this study is to capture part of teachers’
knowledge how to teach introductory programming best. There is no need to
adapt the original definition to reach this goal.

3 Research questions

The main question of this exploratory research is: What are the characteristics of
PCK of teachers teaching an introductory programming course? This question
is separated into three specific research questions.

1. What characteristics are visible in Dutch computer science teachers’ PCK
of teaching introductory programming courses?

2. How do these characteristics relate to programming in the Examenpro-
gramma?

3. How do the characteristics of Dutch computer science teachers’ PCK relate
to the backgrounds of these teachers?

First the PCK of programming of Dutch computer science teachers teaching
introductory programming courses is topic of research. What characteristics are
visible? Next, the relation between these characteristics and programming in
secondary education is examined: What is the difference between teaching an in-
troductory programming course in higher education and teaching programming
in secondary education?

4

4 Method

workshop I workshop II
part A part B part A part B

secondary education 1 1 0 1
hogeschool 2 2 4 3
university 2 1 0 0

total 4? 3? 4 4

5 6
?: One of the respondents is a teacher in secondary education, a teacher educator and

also a teacher in higher education. Hence the difference between the total number of

respondents and the sum of the respondents per educational level.

Table 1: The respondents and their background per (part of the) workshop

Finally the background of the respondents is taken into account. What is
the difference between teachers teaching in different levels of education? Does
it matter if a teacher teaches computer science and engineering students or
students studying programming unrelated subjects?

4 Method

4.1 Respondents

The relevant population for this study is all computer science teachers in the
Netherlands. The selective sample taken from this population is all Dutch com-
puter science teachers visiting the NIOC congress1. The respondents taken from
this sample were participants of two workshops held during the NIOC congress.

The workshops were advertised on http://www.informaticavo.nl, a website
targeting secondary computer science teachers (see Figure 3 on page 20). Read-
ers of the invitation were asked to apply beforehand, almost no-one did, however.
On the congress itself the flyer with the invitation was also circulated. As the
NIOC congress was visited mostly by computer science teachers in higher edu-
cation, anyone at the congress who wanted to participate in the workshop, was
accepted. There was no active selection of respondents from our side.

As a result, almost all respondents teach Computer Science courses in higher
education. Most work on a hogeschool (similar to a college) and teach computer
science and engineering courses to technology minded students. One respondent
works on a hogeschool for Media and ICT, he teaches programming to a group
of students with a different, less technology minded, background.

All the respondents teaching in higher education share a similar traditional
background in computer science. One respondent in the first workshop originally
teaches on a university at the Faculty of Mathematics and Computer Science.
Later he became a teacher educator and also started to teach in secondary
education. There was only one CODI trained teacher, he took part in the second
part of the second workshop. His original did teach music and mathematics in
secondary education.

In Table 1 the respondents are listed per workshop per educational level.
In the first workshop a total of 5 people participated from both university and
hogeschool level. One participant also teaches in secondary education and is a
teacher educator.

5

http://www.informaticavo.nl

4 Method

The second workshop started out with 4 hogeschool teachers. After the
break, a CODI trained teacher joined. He did not have any influence on the
listing of “Big Ideas” however. In this workshop a total of 6 people participated.
Over all 11 people participated in the two workshops.

All respondents were male and from different ages.

4.2 Procedure

The general design of this study was a semi-structured group discussion with
two small groups.

4.3 Instruments

The instrument used in this study is the Context Representation developed by
a group of Australian researchers (Loughran et al., 2001; Mullhall, Berry, &
Loughran, 2003; Loughran et al., 2004; Loughran et al., 2007): One or more
content representations (CoRes) are constructed through structured discussions.
In these discussions a small group of teachers is asked to identify the “big ideas”
of a certain topic these teachers teach. Then, for every big idea, several standard
questions are discussed, for example:

- “What you intend the students to learn about this idea

- Difficulties/limitations connected with teaching this idea

- Teaching procedures (and particular reasons for using these to engage with
this idea)

- Specific ways of ascertaining students understanding or confusion around
this idea” (Mullhall et al., 2003, 7–8).

These big ideas, the questions, and the answers are put into a matrix and form
the CoRe. Due to time constraints this instrument was slightly adapted. Per
structured group discussion only two “Big ideas” were discussed in more detail.

Furthermore, to answer the question how the characteristics of PCK relate
to the definition of programming in the Examenprogramma, the lists with “Big
Ideas” were annotated.

In the examenprogramma (Schmidt, 2007, 44) programming in secondary
education is defined with three aspects: 1. simple data types, 2. simple pro-
gramming structures and 3. simple programming techniques. The “Big Ideas”
listed during the workshop will be marked with a number (1, 2, 3) to denote
the category of the “Big Idea”. Some “Big Ideas” do not fit into any cate-
gory, they are not marked. The respondents did not know of this definition and
categorisation.

As this is a definition and categorisation of programming in secondary com-
puter science education and the respondents listed “Big Ideas” in a first pro-
gramming course in higher education, some “Big Ideas” do not fit the definition
well. The definition speaks of simple data type, simple programming structures,
and simple programming techniques, some of the “Big Ideas” listed are beyond
simple. Those more advanced “Big Ideas” are also marked with a ?. I marked
“Big Ideas” as advanced based upon my experience in teaching programming
in secondary education.

6

5 Results

group discussion I group discussion II
category # (advanced) # (advanced)

1 simple datatypes 9 (2) 3 (1)
2 simple programming structures 6 (2) 9 (2)
3 simple programming techniques 12 (9) 10 (5)
- none 6 (−) 7 (−)

total 32 (13) 29 (8)

Table 2: Number of listed “Big Ideas” per category and total. The number of
advanced ideas is put between parentheses.

Listing and categorizing “Big Ideas” from two different workshops with two
different but similar groups of respondents resulted in similar lists both in num-
ber of total items as in number of items per category, advanced ideas included.
Often after one respondent mentioned one concept, other similar or related
concepts were also mentioned. So chance plays a role in listing “Big Ideas”.
Nevertheless, listing and categorising “Big Ideas” is probably reliable.

Both groups came up with more or less all fundamental concepts found
in programming languages as “Big Ideas”. As almost all respondents teach
programming courses as part of a programming related discipline, the advanced
concepts listed are to be expected. Listing and categorising “Big Ideas” is
probably valid.

The CoRe-instrument seems also reliable: similar groups of respondents in
two different structured group discussions answer the eight standard questions
similarly. Questions A, D and H were answered in more detail and resulted in
a diverse mix of answers from the different respondents Other questions, most
notably B and C, but also E and F, seem less relevant to the respondents. The
questions were often answered shortly and there is almost no diversity in the
answers given.

The instrument is used successfully to capture PCK of science teachers in
Australia(Mullhall et al., 2003) and, also given the broad definition of PCK,
it is probably valid for capturing PCK of teachers teaching an introductory
programming course. On the other hand, the subject programming differs from
the subjects researched using this instrument: programming is a skill whereas
the other topics, like chemical reactions, are more theoretical in nature.

5 Results

5.1 Compiling “Big Ideas”: Results

In Figure 1 (page 8) the “Big Ideas” gathered during the first structured group
discussion are listed and categorised. In Figure 2 (page 9) you will find the “Big
Ideas” of the second structured group discussion. These two lists of “Big Ideas”
are one result of this study: according to the respondents these are the most
important concepts taught in an introductory programming course.

In Table 2 (page 7) these lists of both group discussions are summarised
and compared by putting the number of “Big Ideas” per category and the total
number of ideas in one table. The number of advanced ideas per category is put
between parentheses after the number of ideas per category.

7

5 Results

Figure 1: “Big Ideas” listed during the first structured group discussion

1. object orientation3?

2. class1,2?

3. inheritance3?

4. polymorphism3?

5. variable1

6. constant1

7. sequence2

8. selection2

9. iteration2

10. state

11. pre- and postcondition3

12. specification3

13. algorithm

14. searching strategies3?

15. sorting3?

16. backtracking3?

17. representation of data

18. tree1?

19. list1

20. type1

21. assignment2

22. array1

23. index1

24. pointer1?

25. compiling versus interpreting

26. syntax

27. semantics

28. design strategies3?

29. modular development3?

30. top-down3?

31. exception handling2?

32. debugging3

The “Big Ideas” listed are categorised by:
1 : simple data structures,
2 : simple programming structures,
3 : simple programming techniques,
? : advanced level.
Unmarked ideas do not fit into any of the three categories.

8

5 Results

Figure 2: “Big Ideas” listed during the second structured group discussion

1. object orientation3?

2. variable1

3. constant1

4. control structure2

5. if, if-then-else2

6. repetition2

7. sequence2

8. condition2

9. debugging3

10. documenting3

11. designing3?

12. function2

13. stepwise refinement3?

14. bottom-up3?

15. top-down3?

16. trial and error3

17. history of programming

18. memory

19. interfaces2?

20. syntax

21. algorithm

22. expression2

23. event1?

24. event-handler2?

25. compiling

26. translating

27. execution

28. testing3

29. specification3

The “Big Ideas” listed are categorised by:
1 : simple data structures,
2 : simple programming structures,
3 : simple programming techniques,
? : advanced level.
Unmarked ideas do not fit into any of the three categories.

9

5 Results

In both group discussions, the respondents started their list of “Big Ideas”
with object oriented programming in general, a fairly advanced concept. After
asking what exactly “object oriented” means the respondents concluded that
this concept is not a “Big Idea” in a first programming course. During the ses-
sion the respondents regularly came up with other advanced topics and concepts.
It was difficult for them to stay focussed on beginner level programming.

Both groups of respondents came up with similar “Big Ideas”: they listed
the basic elements of programming languages like variables, constants, iteration,
selection, and functions. There is one exceptional difference, in the second group
discussion less Big Ideas from the category simple data types were listed than
in the first group discussion.

Furthermore, often after the mention of one concept other respondents re-
acted with other similar and related concepts. Directly after “variable” fol-
lowed “constant”; “sequence” resulted in “selection” and “iteration”; “control
structure” in the second group discussion resulted in “if” and “if-then-else”,
“repetition”, “sequention”, “condition” and so on.

Although the advanced concepts listed did vary more between the two group
discussions they were not fundamentally different. Some concepts listed, like
“history of programming” or “compiling versus interpreting”, did not fit into
the three categories of the small definition of programming in the Examenpro-
gramma. They refer to the broader context of programming, computers and
computer science.

5.2 Compiling the CoRe: Results

In Figure 3 (page 16) you will find the CoRe created from the transcript of
the first structured group discussion about the “Big Ideas” array and iteration.
The CoRe from the second structured group discussion, about expression and
variable is put in Figure 4 (page 17). Some general remarks can be made about
the eight different standard questions:

A What would you like your students to learn about this “Big Idea”?

This question asks the respondents to get to the essence of the “Big Idea”.
There are “complete” answers, capturing the concept in one or two sentences
and very specialised answers focussing on a small but important detail of
the concept. Different respondents with different students focus on different
details. For example in the first group discussion, “Big Idea” array, one
respondent wants that his students learn that “it is just a pointer (in the
programming language C)”, while another respondent wants his students
to learn that “it is a representation for real-world problems”. Although
these answers differ greatly, all respondents did understand and accept these
answers given by others.

B Why is it important for your students to learn about this “Big Idea”?

As most “Big Ideas” in a first programming course are fundamental concepts
of programming languages, there is really no question why these “Big Ideas”
are important, as one of the respondents put it, “without it they are unable
to program”.

For these basic “Big Ideas” this question is thus not relevant. On the other
hand, for the “Big Ideas” listed without annotation and some of the advanced

10

5 Results

concepts, this question is more relevant. Because then teachers make a choice
to teach that concept (or not).

C What do you know more about this “Big Idea” (and your students do not
need to know yet)?

By discussing the “Big Ideas” variable and array the respondents of the
group discussions agreed that they know about implementation details of
these concepts their students did not have to know. Besides implementation,
the respondents also mentioned some advanced concepts like complex types
and the formal syntax of expressions.

D Problems/difficulties relative to the learning of this “Big Idea”

As with the first question, the respondents gave many different answers.
The “Big Idea” as a whole is never the problem, but there are a lot of
problems students have encountered when learning the concept. As a result,
the answers are specific smaller problems associated with learning the “Big
Idea” under question.

E Knowledge about students’ thinking that influences your teaching of this “Big
Idea”

This question was difficult to answer. The respondents did agree, however,
that the students’ background does matter. It is important to connect with
the students and supply a context and problems where this “Big Idea” does
make sense to this group of students.

F Other factors that influence your teaching of this “Big Idea”

This question was only answered in the second structured group discussion.
There were three factors mentioned: practical aspects of school like col-
leagues, standard course material, etc.; professional experience, for example
with a coding standard; and most concepts are interwoven with each other.
This last factor was mentioned more often during the discussions: all these
basic concepts belong together and one concept can not be seen apart from
the others. It was difficult for the respondents to separate the one concept
under question from the whole.

G Teaching procedures (and particular reasons for using these to engage with
this “Big Idea”)

This question was only answered in the second group discussion. The respon-
dents agreed: practicality is key, both in problems, examples and assignments
as in the way students learn, that is, by doing.

H Specific ways to remove students misunderstanding or confusion around this
“Big Idea”

Different respondents gave totally different answers. However most answers
have in common that students should experience programming, for example
using tools like IDEs2, compilers and something called “live programming”.
The answers were not targeted specifically on the “Big Idea” under question
but more general in scope.

11

5 Results

5.3 The characteristics of PCK of teachers teaching a first program-
ming course

What are the characteristics of PCK of teachers teaching a introductory pro-
gramming course? First, the important concepts taught in a first programming
course are important characteristics. In Figures 1 and 2 you will find the “Big
Ideas” listed by the respondent during the two structured group discussions.
These “Big Ideas” include fundamental programming language concepts, ad-
vanced programming and software-engineering concepts and some concepts re-
lated to the context of programming like the history of programming languages.

Other characteristics are the constructed CoRes with the results of the struc-
tured group discussions about array and iteration in the first group discussion
and expression and variable in the second discussion. Given this CoRe, another
characteristic of PCK of teachers teaching an introductory programming course
becomes visible: the focus on practicality. The learning-by-doing mentality is
shared among all teachers in the two structured group discussions. Program-
ming is a practical skill gained through experience, one learns to program by
programming. However, the teachers go a step further than that: they use prac-
tical exercises, examples and teaching practices suited for their students. The
background of the students does matter.

Practicality does not mean professionalism, however. At best, the “Big
Ideas” listed only touch the realm of professional software development. In a
first programming course a student makes his or her first steps in the trade of
programming.

All teachers agree that they themselves should know implementation details
and formal notation of expressions but this knowledge is not suited for their
students in a first programming course. The students should learn the basics of
programming first and students are protected in course materials, examples and
problems from the gory details of programming. That does not mean students
have an easy time programming: “Big Ideas” like testing, debugging, trial-and-
error all refer to learning by solving mistakes. Some teachers even give their
students faulty examples and problems to force the students to make mistakes.

5.4 Relation to programming in the Examenprogramma

What is the relation of the characteristics of PCK of teachers teaching an in-
troductory programming course and programming in the Examenprogramma?
From both lists with “Big Ideas” it became clear that teaching “object oriented
programming” is a hot topic among computer science teachers in higher educa-
tion. In both structured group discussions the respondents started with object
oriented programming. After focussing on a first programming course, how-
ever, the respondents started summing up fundamental programming language
concepts.

Both groups did have difficulties to stay focused on beginner level program-
ming, times and again more advanced topics were listed. Clearly a first pro-
gramming course in higher education is more advanced than anything expected
in secondary education given the definition of programming in the Examenpro-
gramma.

Furthermore the teachers listed 21 “Big Ideas” (61 total) that did not fit
in the definition of programming in the Examenprogramma. According to the

12

6 Discussion

teachers there is more to programming that simple data types, simple program-
ming structures and simple programming techniques.

Although there is a difference between a introductory programming course
and programming in secondary education, there is no indication that this dif-
ference influences the characteristics of the PCK of programming, except for
the advanced and extra topics taught. The two teachers teaching in secondary
education also stressed the need for practicality, they also mention protecting
their pupils from gory details, etc.

5.5 Relation of the characteristics to the background of the teachers

What is the relation of the characteristics of PCK of teachers teaching an in-
troductory programming course and the background of the teachers? As most
respondents share a similar background in computer science and work in higher
education, there is no visible difference between the PCK of these teachers. In
this study there is a difference, however, between teachers teaching students
studying computer science (and engineering) and students studying business in-
formation systems on the one hand and the teacher teaching students studying
Media and ICT on the other hand. The latter uses other examples, assignments
and so on than the others: the background of the students and the study does
matter for the characteristics of PCK of a teacher.

The same goes for the one computer science teacher in secondary education:
his input differed from the input of the others. He gave slightly different answers
to the eight standard questions. However this difference could be superfluous
as there obviously is a difference between teaching programming to pupils in
secondary education and students in higher education. The two different con-
texts (secondary education and higher education) result in different perspectives
on teaching programming and hence on the articulation of elements of PCK.
That does not mean that the PCK of the secondary computer science teacher
is fundamentally different from that of the teachers in higher education.

6 Discussion

The main research question of this research is: What are the characteristics of
PCK of teachers teaching an introductory programming course? First of all,
the lists with “Big Ideas” and the CoRe constructed from the structured group
discussions about array, iteration, expression, and variable are all characteristics
of PCK of the respondents teaching an introductory programming course.

Secondly, even when discussing “Big Ideas” of a first programming course,
programming and teaching programming in higher education is of a more ad-
vanced level than programming and teaching programming in secondary edu-
cation. In other words there is a gap between programming on a secondary
education level and first year higher education.

But is that problematic? Successful completion of computer science in sec-
ondary education is not an entry requirement to study a computer science re-
lated discipline. It seems that an introductory programming course in higher
education teaches more than one learns in secondary education. What then is
the value of teaching programming in secondary education? Just a general intro-
duction into the subject of programming without practical application or use in

13

Notes

higher education? This may be an indication for re-evaluation of programming
in secondary education into a more important subject.

Another characteristic is a focus on practicality in teaching programming.
The teachers agree that practical examples, exercises, visualisations, course ma-
terials, etc. help students to learn to program. Students learn by programming,
by trial and error, and the problems should fit the students background to
maximize the effectiveness of the experience of solving the problem.

Furthermore there is more to programming than as defined in the Examen-
programma. Thirty percent of the “Big Ideas” listed does not fit the, clearly,
limited definition of programming used in secondary education. It is uncertain
if the definition of programming also does not fit the experience of teaching
programming of secondary computer science teachers.

Because the respondents almost all teach in higher education, not much can
be said about computer science teachers in secondary education. Nevertheless,
the method of capturing PCK used in this study seems to capture (parts of)
respondents’ PCK of teaching programming. Nevertheless, some of the stan-
dard questions of the structured group discussion were not that relevant. It
seems advisable to adapt the instrument for use in the context of teaching (in-
troductory) programming. To capture the PCK of programming of secondary
computer science teachers a similar set up can be used: use the CoRe instrument
with different groups of secondary education computer science teachers.

The respondents all stressed that it was refreshing to think about the differ-
ent “Big Ideas” in isolation instead as part of a whole programming language.
It will probably be as refreshing for secondary education teachers. Furthermore,
if this research will be done with secondary education teachers, the results of
both researches can be compared.

Although the instruments used seem to work to capture PCK of the four
discussed “Big Ideas”, the captures PCK is far from a complete picture of PCK
of programming. To create a more complete picture, more research is needed.

What does this research mean for secondary education computer science?
The connection with higher education seem to be far from ideal. Also the
definition of programming in the Examenprogramma appears to be too narrow.
It would be advisable to rethink the implementation of the subject programming
in the second education computer science curriculum.

Finally the instrument used in this study to capture PCK is also a useful
tool in teacher education: the respondents, teachers, were forced to think about
a topic they know by heart, something they do not regularly. Furthermore it
is a good way to communicate different perspectives and opinions on teaching
programming as long as the group in the structured group discussions is diverse
in nature.

Notes
1Nationale Informatica Onderwijs Congres, see for more information: http://www.nioc.nl/
2Integrated Development Environment (IDE): software to support professional software

development. An IDE often contains an editor, project management software, compilers and
interpreters, etc.

14

References

References

Baxter, J. A., Lederman, N. G. (1999). Assessment and measurement of
pedagogical content knowledge. In J. Gess-Newsome N. Lederman (Eds.),
PCK and science education (pp. 147–161). Kluwer Academic Publishers.

Gess-Newsome, J. (1999). Pedagogical content knowledge: an introduction and
orientation. In J. Gess-Newsome N. Lederman (Eds.), PCK and science
education (pp. 3–17). Kluwer Academic Publishers.

Loughran, J., Berry, A., Mulhall, P. (2007). Pedagogical content knowledge:
what does it mean to science teachers? In R. Pintó D. Couso (Eds.),
Contributions from science education research (pp. 93–105). Springer.

Loughran, J., Milroy, P., Berry, M., Gunstone, R. (2001). Documenting science
teachers’ pedagogical content knowledge through Pap-eRs. Research in
Science Education, 31, 289–307.

Loughran, J., Mulhall, P., Berry, A. (2004). In search of pedagogical content
knowledge in science: Developing ways of articulating and documenting
professional practice. Journal of Research in Science Teaching, 41 (4),
370–391.

Mullhall, P., Berry, A., Loughran, J. (2003, December). Frameworks for
representing science teachers’ pedagogical content knowledge. Asia-Pacific
Forum on Science Learning and Teaching, 4 (2), 1–25.

Saeli, M. (2008). Research proposal esoe – mara saeli. Eindhoven School of
Education (ESoE).

Sanders, L. R., Borko, H., Lockard, J. D. (1993). Secondary science teachers’
knowledge base when teaching science courses in and out of their area of
certification. Journal of Research in Science Teaching, 30 (7), 723–736.

Schmidt, V. (2007a). Handreiking schoolexamen informatica havo/vwo (assis-
tance school exam computer science for havo and vwo). http://www.slo.
nl/downloads/Handreiking_Informatica_DEFINITIEF.pdf/, SLO, En-
schede.

Schmidt, V. (2007b). Vakdossier 2007 informatica (file on computer sci-
ence in secondary education 2007). http://www.slo.nl/themas/00108/
341330003_Vakdossier_2007_informatica.pdf/, SLO, Enschede.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching.
Educational Researcher, 15, 4–14.

Turner-Bisset, R. (1999). The knowledge bases of the expert teacher. British
Educational Research Journal, 25 (1), 39–55.

15

http://www.slo.nl/downloads/Handreiking_Informatica_DEFINITIEF.pdf/
http://www.slo.nl/downloads/Handreiking_Informatica_DEFINITIEF.pdf/
http://www.slo.nl/themas/00108/341330003_Vakdossier_2007_informatica.pdf/
http://www.slo.nl/themas/00108/341330003_Vakdossier_2007_informatica.pdf/

A CoRe of structured group discussion I: Array and Iteration

A CoRe of structured group discussion I: Array and It-
eration

Table 3: The CoRe of the first structured group discussion: Array and
Iteration

Big Idea I: Array Big Idea II: Iteration

A
What would you like your stu-
dents to learn about this Big
Idea?

• An array is a whole series of variables
in one compact object

• It has an upper bound and a lower
bound

• It is just a pointer (in C)
• It is a list, a sequence of variables with

some specific characteristics
• It has an index to access elements
• It is a representation for real-world

problems

• “What arrays are for data, iteration is
for control”

• Arrays and iteration are connected
• The operational semantics of an iter-

ation
• The looping variable and its scope
• There are different variants of iteration

statements: for, while, repeat, fore-
ach, etc.

B
Why is it important for your
students to learn about this
Big Idea?

• You need arrays to write non-trivial
programs

• It is elementary and it is connected to
other (basic) concepts like an index

• “It is one of the simplest things to
make things more difficult.”

• “I am unsure if my students really need
to know the concept”

C

What do you know more
about this Big Idea (and your
students do not need to know
yet)?

• Memory allocation and memory man-
agement

D Problems/difficulties relative
to the learning of this Big Idea

• Indexing and related problems like the
upper bound and the lower bound

• Does the array stars at 0 or at 1
• Constant length or variable length ar-

rays
• Multi-dimensional arrays
• Copying of arrays
• When using an array as a parameter

to a function, is the array passed to
the function by reference or by value

• An index itself can be a meaningful
value (as in a histogram)

• Breaking out of a loop with break,
continue, exit

• Misleading keywords like while and do:
what do they mean?

• When the looping condition becomes
false half way during the execution of
the loop, the loop does not stop then.

• Nested loops
• Students put a semicolon at the end of

the for-definition and on the next line
they write the content of the for-loop.

• Input via a loop: forgetting to read the
user input again in the loop.

E
Knowledge about students’
thinking that influences your
teaching of this Big Idea

• Provide a context in which arrays are
useful and needed

• students avoid using arrays

F Other factors that influence
your teaching of this Big Idea

G

Teaching procedures (and
particular reasons for using
these to engage with this Big
Idea

Continued on next page

16

B CoRe of structured group discussion II: Expression and Variable

Big Idea I: Array Big Idea II: Iteration

H
Specific ways to remove stu-
dents misunderstanding or
confusion around this Big Idea

• Provide a context in which arrays are
useful and needed: students then un-
derstand why they need arrays

• I introduce arrays by looking at a
bunch of variables. I connect to the
concept of variable to explain the ar-
ray

B CoRe of structured group discussion II: Expression and
Variable

Table 4: The CoRe of the second structured group discussion: Expressions
and Variable

Big Idea III: Expression Big Idea IV: Variable

A
What would you like your stu-
dents to learn about this Big
Idea?

• What an expression is, how it works
and some examples, nothing more
than that.

• How to create an expression in some
programming language: every lan-
guage it is a little different; the syntax
of expressions.

• An expression is a combination of vari-
ables, operators and other expressions.
An expression is an expression of ex-
pressions.

• The concept of a variable, not just the
word “variable”, but what it is.

• A variable is a memory location
• Every variable has a type
• What is the scope of a variable
• The assignment of a value to a vari-

able
• Every variable has a (chosen) name

B
Why is it important for your
students to learn about this
Big Idea?

• It is a basic method to express that
your program has to do something

• Expressions are used in a selection as
a condition

• It is the most important part of a pro-
gramming language

• Without it, one is unable to program

C

What do you know more
about this Big Idea (and your
students do not need to know
yet)?

• The formal syntax of expressions, it is
an abstraction level they do not un-
derstand.

• Bitwise operators
• I almost never use the term “expres-

sion” in my classes although there is
an expression on almost every line in
a program.

• Memory allocation
• References and pointers, they do not

need to know then in the beginning
• Complex types (like records and ob-

jects), sometimes students try to solve
problems using only simple types while
they better use a complex type, but
they do not know them yet.

Continued on next page

17

B CoRe of structured group discussion II: Expression and Variable

Big Idea III: Expression Big Idea IV: Variable

D Problems/difficulties relative
to the learning of this Big Idea

• Calling a method after they looked up
the definition of the method in the
documentation. Some students copy
the whole declaration instead of using
just the name.

• Combining expressions to more com-
plex expressions, the hierarchy of op-
erators and when to use parentheses

• Assignment operator versus compari-
son operator: they are used to write
A = B as in mathematics, but that
is the assignment operator. To com-
pare two expressions, you have to use
A == B instead.

• Knowing the exact syntax of all the
operators, like division with the per-
cent sign.

• Using the same name over and over
• It is an abstract concept
• The scope of a variable is a fundamen-

tal problem
• It is difficult to choose meaningful

names for variables

E
Knowledge about students’
thinking that influences your
teaching of this Big Idea

• The background of the students is im-
portant: there is for example a differ-
ence between computer science engi-
neering students and business informa-
tion systems. We adapt our courses
and course materials to better connect
with our students.

F Other factors that influence
your teaching of this Big Idea

• There are standard course materials I
have to use

• My colleagues, we decide together
what we teach

• “Expressions” is not a separate sub-
ject: it is interwoven with other con-
cepts during the course

• Experience with coding standards:
how to name variables consistently
and with (extra) meaning like Hungar-
ian notation

G

Teaching procedures (and
particular reasons for using
these to engage with this Big
Idea

• The more practical the assignments
and examples the better.

• Teaching by example, practical exam-
ples like programming a robot with
one or two sensors. The conditions
then are straightforward.

• Trial and error
• Visualisation, for example Boolean ex-

pressions with lights and switches
Continued on next page

18

B CoRe of structured group discussion II: Expression and Variable

Big Idea III: Expression Big Idea IV: Variable

H
Specific ways to remove stu-
dents misunderstanding or
confusion around this Big Idea

• “Live programming”: writing simple
programs live in front of the class and
all students follow me on their own
computers. They make errors just
copying my program and their neigh-
bours have different errors. They then
start working together to solve these
errors.

• Programming errors not caught by
tools like editors and compilers, those
are the worst especially when the pro-
gram does work.

• Give students a program full of er-
rors to solve and trace the errors back
given the error log of the compiler.

• A box with Lego to visualise memory
and variables

• Referring to machine schemas as used
in school mathematics

• Live programming
• Refactoring with an IDE like Eclipse to

visualise the scope of variables
• Using good examples and making er-

rors

19

C Invitation Workshop

C Invitation Workshop
Figure 3: Invitation for the Workshop published on http://www.
informaticavo.nl, a website for secondary computer science teachers in the
Netherlands. Furthermore, the invitation was also circulated at the NIOC. This
flyer invites secondary computer science teachers to participate in our workshop
and share their experience and ideas about teaching programming with us and
more importantly with each other.

20

http://www.informaticavo.nl
http://www.informaticavo.nl

	Introduction
	Theory
	Programming
	Pedagogical Content Knowledge

	Research questions
	Method
	Respondents
	Procedure
	Instruments

	Results
	Compiling ``Big Ideas'': Results
	Compiling the CoRe: Results
	The characteristics of PCK of teachers teaching a first programming course
	Relation to programming in the Examenprogramma
	Relation of the characteristics to the background of the teachers

	Discussion
	Notes
	References
	Appendices
	CoRe of structured group discussion I: Array and Iteration
	CoRe of structured group discussion II: Expression and Variable
	Invitation Workshop

