Bibliography
Huub de Beer
(n.d.-a). Retrieved from http://thehangedman.com/teaching-files/ccc/goodwin-vision.pdf
(n.d.-b). In. http://doi.org/10.1007/978-3-319-04993-9_10
(n.d.-c). Retrieved from http://www.colorado.edu/education/sites/default/files/attached-files/Howe_Eisenhart_Stds_for_Qualitative_Research.pdf
(n.d.-d). http://doi.org/10.1177/1077800403259492
(n.d.-e).
Abell, P. (2004). Narrative Explanation: An
Alternative to Variable-Centered Explanation? Annual Review
of Sociology, 30, 287–310. Retrieved from http://www.jstor.org/stable/29737695
Åberg-Bengtsson, L. (1996). Studying primary school
children’s learning of graphics: some experiences using video recordings
as data. In NFPF-kongressen’96 "Pedagogikkog teknologi -
nye utfordringer". Høgskolen i Lillehammer,
7- 10 March 1996. Retrieved from http://www.ped.gu.se/projekt/KIKI/personer/pdffiles/nfpf96.pdf
Åberg-Bengtsson, L., & Ottosson, T. (1995). Primary school children’s understanding of bar charts and
line grpahs: A preliminary analysis. In 6th EARLi conference, Nijmegen, the Netherlands August
26–31.
Abrahamson, D. (2009). Embodied design:
Constructing means for constructing meaning. Educational
Studies in Mathematics, 70(1), 27–47. Retrieved from http://ccl.northwestern.edu/papers/2009/AbrahamsonESM2009.pdf
Abrahamson, D., Lee, RosaG., Negrete, AndreaG., & Gutiérrez, JoséF.
(2014). Coordinating visualizations of polysemous
action: values added for grounding proportion. ZDM,
46(1), 79–93. http://doi.org/10.1007/s11858-013-0521-7
Ackermann, E. (1991). From decontextualized to
situated knowledge: revisiting Piaget’s water-level experiment.
In I. Harel & S. Papert (Eds.),
Constructionism (pp. 269–294).
Ackermann, E. (2001). Piaget’s
Constructivism, Papert’s Constructionism:
What’s the difference? In Constructivism: uses and perspectives in education.
Conference proceedings, Geneva, September 2001. Retrieved
from http://learning.media.mit.edu/content/publications/EA.Piaget%20_%20Papert.pdf
Aikenhead, G. S. (1996). Science Education: Border
Crossing into the Subculture of Science. Studies in Science
Education, 27, 1–52. Retrieved from http://www.usask.ca/education/people/aikenhead/sse\_border.pdf
Ainley, J. (1995). Re-viewing graphing: Traditional
and intuitive approaches. For the Learning of
Mathematics, 15(2), 10–16.
Ainley, J., Enger, L., & Searle, D. (2008). Students in a Digital Age: Implications of ICT for
Teaching and Learning. In J. Voogt & G. Knezek (Eds.),
International Handbook of Information
Technology in Primary and Secondary Education (Vol. 20, pp.
63–80). Springer US. Retrieved from http://dx.doi.org/10.1007/978-0-387-73315-9_4
Ainley, J., Nardi, E., & Pratt, D. (2000). The
construction of meanings for trend in active graphing.
International Journal of Computers for Mathematical Learning,
5, 85–114. Retrieved from http://dx.doi.org/10.1023/A:1009854103737
Ainley, J., Pratt, D., & Nardi, E. (2001). Normalising: children’s activity to construct meanings
for trend. Educational Studies in Mathematics,
45(1), 131–146.
Ainsworth, S. (1999). The functions of multiple
representations. Computers & Education,
33(2-3), 131–152.
Ainsworth, S. (2006). DeFT: A conceptual framework
for considering learning with multiple representations.
Learning and Instruction, 16(3), 183–198.
http://doi.org/10.1016/j.learninstruc.2006.03.001
Ainsworth, S. (2008). How do animations influence
learning. In D. Robinson & G. Schraw (Eds.), Current perspectives on cognition, learning, and
instruction: Recent innovations in educational technology that
facilitate student learning (pp. 37–67). Information Age
Publishing Charlotte, NC.
Ainsworth, S., Bibby, P., & Wood, D. (1997). Information technology and multiple representations: new
opportunities – new problems. Journal of Information
Techology for Teacher Education, 6(1), 93–105.
http://doi.org/10.1080/14759399700200006
Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple
representational systems in learning primary mathematics. The
Journal of the Learning Sciences, 11(1), 25–61.
Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science,
333(6046), 1096–1097. Retrieved from http://podolskyr.people.cofc.edu/biol211/other/Ainsworth.pdf
Ainsworth, S., & VanLabeke, N. (2004). Multiple
forms of dynamic representation. Learning and
Instruction, 14(3), 241–255. http://doi.org/10.1016/j.learninstruc.2004.06.002
Akerson, V. L., White, O., Colak, H., & Pongsanon, K. (2011). Relationships Between Elementary Teachers’
Conceptions of Scientific Modeling and the Nature of Science. In
M. S. Khine & I. M. Saleh (Eds.), Models
and Modeling (Vol. 6, pp. 221–237). Springer Netherlands.
http://doi.org/10.1007/978-94-007-0449-7_10
Akker, Jan van den. (1999). Principles and methods
of development research. In Jan van den Akker (Ed.), Design approaches and tools in education and
training (Vol. 14). Dordrecht: Kluwer Academic Publishers.
Akker, J. van den, Bannan, B., Kelly, A., Nieveen, N., & Plomp, T.
(2013). Educational Design Research. (T. Plomp
& N. Nieveen, Eds.) (Vol. A). SLO. Retrieved from http://international.slo.nl/edr/
Alberts, G., & Kaenders, R. (2005). Ik liet de
kinderen wél iets leren. Nieuw
Archief Voor de Wiskunde, 5/6(3), 247–251. Retrieved from
http://www.math.leidenuniv.nl/~naw/serie5/deel06/sep2005/pdf/hiele.pdf
Alexopoulou, E., & Driver, R. (1996). Small-group discussion in physics: Peer interaction modes
in pairs and fours. Journal of Research in Science
Teaching, 33(10), 1099–1114. http://doi.org/10.1002/(SICI)1098-2736(199612)33:10<1099::AID-TEA4>3.0.CO;2-N
Amoah, V. K. (2003). Situated cognition and
students’ conceptual understanding of elementary calculus.
Proceedings of the British Society for Research into Learning
Mathematics, 23(2). Retrieved from http://www.bsrlm.org.uk/IPs/ip23-2/BSRLM-IP-23-2-1.pdf
Andel, P. V. (1994). Anatomy of the unsought
finding. serendipity: Orgin, history, domains, traditions, appearances,
patterns and programmability. The British Journal for the
Philosophy of Science, 45(2), 631–648.
Anderson, D., & Clark, M. (2012). Development
of syntactic subject matter knowledge and pedagogical content knowledge
for science by a generalist elementary teacher. Teachers and
Teaching, 18(3), 315–330. http://doi.org/10.1080/13540602.2012.629838
Anderson, L. (2006). Analytic Autoethnography. Journal
of Contemporary Ethnography, 35(4), 373–395.
http://doi.org/10.1177/0891241605280449
Anderson, T., & Shattuck, J. (2012). Design-Based Research A Decade of Progress in Education
Research? Educational Researcher, 41(1), 16–25.
Anjewierden, A., & Gijlers, H. (2008). An
exploration of tool support for categorical coding. In Proceedings of the 8th international conference on
International conference for the learning sciences-Volume 1
(pp. 35–42). International Society of the Learning Sciences.
Appleton, K. (2002). Science Activities That Work:
Perceptions of Primary School Teachers. Research in Science
Education, 32(3), 393–410. http://doi.org/10.1023/A:1020878121184
Appleton, K. (2006). Science pedagogical content
knowledge and elementary school teachers. In K. Appleton (Ed.),
Elementary science teacher education:
International perspectives on contemporary issues and
practice (pp. 31–54). Mahwah, NJ: Lawrence Erlbaum.
Arcavi, A. (1994). Symbol sense: Informal
sense-making in formal mathematics. For the Learning of
Mathematics, 14(3), 24–35. Retrieved from http://stwww.weizmann.ac.il/department40/publications/Arcavi/8%20Symbol%20Sense%201994.pdf
Arcavi, A. (2005). Developing and using symbol
sense in mathematics. For the Learning of Mathematics,
25(2), 42–47. Retrieved from http://stwww.weizmann.ac.il/department40/publications/Arcavi/22%20Symbol%20Sense%202005.pdf
Arcavi, A. (2008). Modelling with graphical
representations. For the Learning of Mathematics,
28(2), 2–10.
Arcavi, A., & Isoda, M. (2007). Learning to
listen: from historical sources to classroom practice.
Educational Studies in Mathematics, 66(2), 111–129.
Artigue, M. (2002). Learning mathematics in a CAS
environment: The genesis of a reflection about instrumentation and the
dialectics between technical and conceptual work.
International Journal of Computers for Mathematical Learning,
7(3), 245–274.
Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. E.
(1997). The development of students’ graphical
understanding of the derivative. The Journal of Mathematical
Behavior, 16(4), 399–431. http://doi.org/10.1016/S0732-3123(97)90015-8
Babb, J. (2005). Mathematical Concepts and Proofs
from Nicole Oresme. Science & Education,
14(3), 443–456.
Bagni, G. T. (2005). The historical roots of the
limit notion: Cognitive development and the development of
representation registers. Canadian Journal of Science,
Mathematics and Technology Education, 5(4), 453–468.
http://doi.org/10.1080/14926150509556675
Bain, J. (1994, September 28). Understanding by
learning or learning by understanding.
Baker, M. (1994). A model for negotiation in
teaching-learning dialogues. Journal of Artificial
Intelligence and Education, 5, 199–254.
Baker, M. (2003). Computer-mediated argumentative
interactions for the co-elaboration of scientific notions. In
Arguing to learn: Confronting cognitions in
computer-supported collaborative learning environments (Vol.
1, pp. 1–25).
Baker, M., & Lund, K. (1997). Promoting
reflective interactions in a CSCL environment. Journal of
Computer Assisted Learning, 13(3), 175–193.
Bakker, Arthur. (2004). Design research in
statistics education: on symbolizing and computer tools (PhD
thesis). Universiteit Utrecht. Retrieved from http://igitur-archive.library.uu.nl/dissertations/2004-0513-153943/inhoud.htm
Bakker, A., & Gravemeijer, K. (2004). Learning
to reason about distribution. In D. Ben-Zvi & J. Garfield
(Eds.), The challenge of developing statistical
literacy, reasoning and thinking (pp. 147–168). Springer.
Bakker, Arthur, & Hoffmann, M. H. G. (2005). Diagrammatic reasoning as the basis for developing
concepts: a semiotic analysis of students’learning about statistical
distribution. Educational Studies in Mathematics,
60, 333–358. Retrieved from http://www.jstor.org/stable/25047200
Bakker, A., & van Eerde, H. (2013). An
introduction to design-based research with an example from statistics
education. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg
(Eds.), Doing qualitative research: methodology
and methods in mathematics education.
Ball, D. L. (1993). With an Eye on the Mathematical
Horizon: Dilemmas of Teaching Elementary School Mathematics.
The Elementary School Journal, 93(4), 373–397.
Ball, D. L., & Bass, H. (2002). Toward a
practice-based theory of mathematical knowledge for teaching. In
Proceedings of the Annual Meeting of the
Canadian Mathematics Education Study Group. Kingston, Canada:
CMESG (pp. 3–14).
Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics
well enough to teach third grade, and how can we decide?
American Educator, 15–17, 20–22, 43–46.
Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of
teachers’ mathematical knowledge. In V. Richardson
(Ed.), Handbook of research on
teaching (Vol. 4, pp. 433–456).
Banchi, H., & Bell, R. (2008). The Many Levels
of Inquiry. Science and Children, 46(2), 26–29.
Retrieved from http://www.miseagrant.umich.edu/lessons/files/2013/05/The-Many-Levels-of-Inquiry-NSTA-article.pdf
Bannan-Ritland, B. (2003). The role of design in
research: The integrative learning design framework.
Educational Researcher, 32(1), 21–24. Retrieved from
http://www.coe.tamu.edu/~rcapraro/Articles/Design%20Experiments/Role%20of%20Design%20in%20RSCH%20The%20Integrative%20learning%20Design%20Framework.pdf
Barab, S. A., & Kirshner, D. (2001). Guest Editors’
Introduction. The Journal of the Learning Sciences,
10(1/2), 5–15.
Barab, S. A., & Luehmann, A. L. (2003). Building sustainable science curriculum: Acknowledging
and accommodating local adaptation. Science Education,
87(4), 454–467.
Barab, S. A., & Squire, K. (2004). Design-based
research: Putting a stake in the ground. Journal of the
Learning Sciences, 13(1), 1–14. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.5080&rep=rep1&type=pdf
Barber, J. P., & Walczak, K. K. (2009). Conscience and Critic: peer debriefing strategies in
grounded theory research. Retrieved from http://www.liberalarts.wabash.edu/storage/ConscienceCriticPeerDebriefing_%20BarberWalczak_AERA2009presentation.pdf
Barnes, M. (1995). An inuitive approach to
calculus. Retrieved from http://hsc.csu.edu.au/maths/teacher_resources/2384/prof_reading/journals/barnes/M_Barnes_Nov_95.html
Barr, V., & Stephenson, C. (2011). Bringing
Computational Thinking to K-12: What is Involved and What is the Role of
the Computer Science Education Community? ACM Inroads,
2(1), 48–54. http://doi.org/10.1145/1929887.1929905
Barton, R. (1997). Computer-aided graphing: a
comparative study. Technology, Pedagogy and Education,
6(1), 59–72.
Bassok, M., & Olseth, K. L. (1995). Object-based representations: Transfer between cases of
continuous and discrete models of change. Journal of
Experimental Psychology: Learning, Memory, and Cognition,
21(6), 1522–1538. Retrieved from http://search.proquest.com/docview/614327802?accountid=27128
Beach, K. (1999). Consequential transitions: A
sociocultural expedition beyond transfer in education. Review
of Research in Education, 24(1), 101–139. Retrieved from
http://people.ucsc.edu/\~gwells/Files/Courses_Folder/ED%20261%20Papers/Beach%20Transfer.pdf
Beauchamp, G., & Kennewell, S. (2008). The
influence of ICT on the interactivity of teaching. Education
and Information Technologies, 13(4), 305–315.
Beer, H. de, Gravemeijer, K., & Eijck, M. van. (n.d.). Teaching primary calculus: an hypothetical learning
theory based on emergent modeling.
Beer, H. de, Gravemeijer, K., & Eijck, M. van. (2015). Discrete and continuous reasoning about change in primary
school classrooms. ZDM, 1–16. http://doi.org/10.1007/s11858-015-0684-5
Beer, H. de, Gravemeijer, K., & Eijck, M. van. (2017). A proposed
local instruction theory for teaching instantaneous speed in grade five.
The Mathematics Enthusiast, 14(1), 435–468. Retrieved
from http://scholarworks.umt.edu/tme/vol14/iss1/24
Beer, H. de, Gravemeijer, K., & Eijck, M. van. (in preparationin
preparation). Starting points for a local
instruction theory on teaching instantaneous speed in primary
school.
Bell, P. (2004). On the theoretical breadth of
design-based research in education. Educational
Psychologist, 39(4), 243–253.
Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative Inquiry Learning: Models, tools, and
challenges. International Journal of Science Education,
32(3), 349–377. http://doi.org/10.1080/09500690802582241
Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2008). A scaffolding framework to support the construction of
evidence-based arguments among middle school students.
Educational Technology Research and Development,
56(4), 401–422.
Bennett, S., & Maton, K. (2010). Beyond the
‘digital natives’ debate: Towards a more
nuanced understanding of students’ technology experiences.
Journal of Computer Assisted Learning, 26(5), 321–331.
http://doi.org/10.1111/j.1365-2729.2010.00360.x
Bennett, Sue, Maton, K., & Kervin, L. (2008). The ‘digital natives’ debate: A
critical review of the evidence. British Journal of
Educational Technology, 39(5), 775–786. Retrieved from http://kimhuett.wiki.westga.edu/file/view/The-digital-natives-debate-A-critical-review-of-the-evidence.pdf
Berg, B. L. (2004). Qualitative research
methods for the social sciences (5th ed.). Pearson
Education.
Berg, E. van den, Schweickert, F., & Manneveld, G. (2009). Learning graphs and learning science with sensors in
learning corners in fifth and sixth grade. Contemporary
Science Education Research: Teaching, 383–394. Retrieved from http://www.esera2009.org/books/Book1_CSER_Teaching.pdf#page=397
Besson, U. (2010). Calculating and understanding:
Formal models and causal explanations in science, common reasoning and
physics teaching. Science & Education,
19(3), 225–257.
Betrancourt, M. (2005). The animation and
interactivity principles in multimedia learning. In The Cambridge handbook of multimedia learning
(pp. 287–296).
Bikner-Ahsbahs, A., & Prediger, S. (2006). Diversity of theories in mathematics education – How can
we deal with it? ZDM, 38(1), 52–57.
Bingimlas, K. A. (2009). Barriers to the successful
integration of ICT in teaching and learning environments: a review of
the literature. Eurasia Journal of Mathematics, Science &
Technology Education, 5(3), 235–245.
Black, P. (2009). In Response To: Alan Schoenfeld.
Educational Designer, 1(3). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue3/article12
Blikstein, P. (2013). Digital Fabrication and
‘Making’in Education: The Democratization of
Invention. FabLabs: Of Machines, Makers and Inventors,
1–21.
Blum, W. (2002). ICMI Study 14: Applications and
modelling in mathematics education–Discussion document.
Educational Studies in Mathematics, 51(1), 149–171.
Bock, D. de, Dooren, W. van, Janssens, D., & Verschaffel, L. (2002).
Improper use of linear reasoning: An in-depth study
of the nature and the irresistibility of secondary school students’
errors. Educational Studies in Mathematics,
50(3), 311–334.
Boersema, D. (2009). Pragmatism and
reference. MIT Press. Retrieved from http://www.lightforcenetwork.com/sites/default/files/David%20Boersema%20-%20Pragmatism%20and%20Reference.1-146.pdf
Boudourides, M. (2008). Constructivism, Education,
Science, and Technology. Canadian Journal of Learning and
Technology / La Revue Canadienne de l’apprentissage Et de
La Technologie, 29(3). Retrieved from http://www.cjlt.ca/index.php/cjlt/article/view/83/77
Boulter, C., & Buckley, B. (2000). Constructing
a typology of models for science education. In Developing
models in science education (pp. 41–57).
Bowden, J., Dall’Alba, G., Martin, E., Laurillard, D., Marton, F.,
Masters, G., … Walsh, E. (1992). Displacement,
velocity, and frames of reference: Phenomenographic studies of students’
understanding and some implications for teaching and assessment.
American Journal of Physics, 60(3), 262–269.
http://doi.org/10.1119/1.16907
Bowers, J., Bezuk, N., & Aguilar, K. (2011). Adapting the mathematical task framework to design online
didactic objects. International Journal of Mathematical
Education in Science and Technology, 42(4), 481–495.
Boyd, A., & Rubin, A. (1996). Interactive
video: A bridge between motion and math. International
Journal of Computers for Mathematical Learning, 1(1),
57–93.
Boyer, C. B. (1959). The history of the
calculus and its conceptual development.(The concepts of the
calculus) (2nd ed.). Mineola: Dover Publications.
Bransford, J., Brophy, S., & Williams, S. (2000). When Computer Technologies Meet the Learning Sciences:
Issues and Opportunities. Journal of Applied Developmental
Psychology, 21(1), 59–84. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.4619&rep=rep1&type=pdf
Bransford, J., & Schwartz, D. (1999). Rethinking transfer: A simple proposal with multiple
implications. Review of Research in Education,
24, 61–100. Retrieved from http://artstart2011.pbworks.com/f/Bransford%2B%2526%2BSchwartz-transfer.pdf
Braun, V., & Clarke, V. (2006). Using thematic
analysis in psychology. Qualitative Research in
Psychology, 3(2), 77–101.
Brown, A. L. (1992). Design experiments:
Theoretical and methodological challenges in creating complex
interventions in classroom settings. Journal of the Learning
Sciences, 2(2), 141–178.
Brown, J., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning.
Educational Researcher, 18(1), 32–42. Retrieved from
http://www.psychology.nottingham.ac.uk/staff/sea/c8cxce/Readings/BrownCollinsDuguid1989.pdf
Buckingham, D., & Schultz, T. R. (2000). The
Developmental Course of Distance, Time, and Velocity Concepts:A
Generative Connectionist Model. Journal of Cognition and
Development, 1(3), 305–345. Retrieved from http://www.psych.mcgill.ca/perpg/fac/shultz/personal/Recent\_Publications\_files/dtv00.pdf
Buijs, K., Klep, J., & Noteboom, A. (2008). TULE - Rekenen/wiskunde. Inhouden en activiteiten bij de
kerndoelen. Inhoud van de website tule.slo.nl. Retrieved from http://www.slo.nl/downloads/2008/tule-rekenenwiskunde2011.pdf
Bundy, A. (2007). Computational thinking is
pervasive. Journal of Scientific and Practical
Computing, 1(2), 67–69.
Burkhardt, H., & Schoenfeld, A. (2003). Improving educational research: toward a more useful,
more influential, and better-funded enterprise. Educational
Researcher, 32(9), 3–14.
Burks, A. W. (1946). Peirce’s theory of
abduction. Philosophy of Science, 301–306. Retrieved
from http://people.ucsc.edu/~ktellez/abduction.pdf
Campbell, T., Oh, P. S., & Neilson, D. (2012). Discursive Modes and Their Pedagogical Functions in
Model-Based Inquiry (MBI) Classrooms. International Journal
of Science Education, 34(15), 2393–2419.
Carey, S. (1992). The origin and evolution of
everyday concepts. In R. Giere (Ed.), Cognitive models of science (pp. 89–128).
University of Minnesota Press. Retrieved from http://www.wjh.harvard.edu/~lds/pdfs/carey1992a.pdf
Carey, S. (2000). Science education as conceptual
change. Journal of Applied Developmental Psychology,
21(1), 13–19.
Carey, S., & Smith, C. (1993). On understanding
the nature of scientific knowledge. Educational
Psychologist, 28(3), 235–251. http://doi.org/10.1207/s15326985ep2803_4
Carlson, M. (1998). A cross-sectional investigation
of the development of the function concept. In E. Dubinsky, A.
Schoenfeld, & J. Kaput (Eds.), Research in
collegiate mathematics education (Vol. 7, pp. 115–162).
Retrieved from http://stat.asu.edu/~carlson/crosssec.pdf
Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002).
Applying covariational reasoning while modeling
dynamic events: A framework and a study. Journal for Research
in Mathematics Education, 33(5), 352–378.
Carlson, M., Larsen, S., & Lesh, R. (2003). Integrating a models and modeling perspective with
existing research and practice. In Richard Lesh & H. Doerr
(Eds.), Beyond constructivism: Models and
modeling perspectives on mathematics problem solving, learning, and
teaching (pp. 465–478). Hillsdale: Lawrence Erlbaum
Associates. Retrieved from http://math.clas.asu.edu/~carlson/chap25.pdf
Carlson, M., Oehrtman, M., & Engelke, N. (2010). The Precalculus Concept Assessment: A Tool for Assessing
Students’ Reasoning Abilities and Understandings. Cognition
and Instruction, 28(2), 113–145.
Carmichael, P. (2002). Extensible Markup Language
and Qualitative Data Analysis. Forum: Qualitative
Sozialforschung, 3(2). Retrieved from http://www.qualitative-research.net/index.php/fqs/article/view/852/1851
Carpenter, J. (2007). AC 2007-961: INTEGRATING CALCULUS AND
INTRODUCTORY SCIENCE CONCEPTS.
Carroll, J. W. (2002). Instantaneous motion.
Philosophical Studies, 110(1), 49–67.
Carter, L. (2005). Globalisation and science
education: Rethinking science education reforms. Journal of
Research in Science Teaching, 42(5), 561–580.
http://doi.org/10.1002/tea.20066
Castells, M. (1997). An introduction to the
information age. City, 2(7), 6–16.
Castillo-Garsow, C. (2012). Continuous Quantitative
Reasoning. In R. Mayes, R. Bonillia, L. L. Hatfield, & S.
Belbase (Eds.), Quantitative reasoning and
Mathematical Modeling: A Driver for STEM Integrated Education and
Teaching in Context (pp. 55–73). Retrieved from http://www.uwyo.edu/wisdome/_files/documents/castillo_garsow.pdf
Castillo-Garsow, C., Johnson, H. L., & Moore, K. C. (n.d.).
Chunky and Smooth Images of Change.
Retrieved from http://yeolcoatl.net/research/2012_cwcg_chunky_and_smooth_endfig.pdf
Chang, H.-Y. (2012). Teacher guidance to mediate
student inquiry through interactive dynamic visualizations.
Instructional Science, 1–26. http://doi.org/10.1007/s11251-012-9257-y
Chen, D., & Stroup, W. (1993). General system
theory: Toward a conceptual framework for science and technology
education for all. Journal of Science Education and
Technology, 2(3), 447–459.
Chi, M. (2009). Active-constructive-interactive: A
conceptual framework for differentiating learning activities.
Topics in Cognitive Science, 1(1), 73–105.
Chi, M., & Roscoe, R. (2002). The processes and
challenges of conceptual change. Reconsidering Conceptual
Change: Issues in Theory and Practice, 3–27.
Cho, J., & Trent, A. (2006). Validity in
qualitative research revisited. Qualitative Research,
6(3), 319–340. http://doi.org/10.1177/1468794106065006
Christie, D., Tolmie, A., Thurston, A., Howe, C., & Topping, K.
(2009). Supporting group work in Scottish primary
classrooms: improving the quality of collaborative dialogue.
Cambridge Journal of Education, 39(1), 141–156.
Cicero, M. L. L., & Spagnolo, F. (2009). The
use of motion sensor can lead the students to understanding the
cartesian graph. In Proceedings of the
Sixth Conference of European Research in Mathematics Education, Lyon,
France, 2009 (pp. 250–259). Retrieved from http://math.unipa.it/~grim/service/tesi_PhD_marzo_2010/Lo%20Cicero%20ML_tesi%20PhD%202010/ALLEGATO%202.pdf
Clagett, M. (1959). The science of mechanics in
the middle ages. The University of Wisconsin Press.
Clandinin, D. (2006). Narrative Inquiry: A
Methodology for Studying Lived Experience. Research Studies
in Music Education, 27(1), 44–54. http://doi.org/10.1177/1321103X060270010301
Clement, J. (1989a). Learning via model
construction and criticism. Handbook of Creativity:
Assessment, Theory and Research, 341–381.
Clement, J. (1989b). The Concept of Variation and
Misconceptions in Cartesian Graphing. Focus on Learning
Problems in Mathematics, 11(1), 77–87.
Clements, D. H. (1999). The future of educational
computing research: The case of computer programming.
Information Technology in Childhood Education, 1,
147–179. Retrieved from http://investigations.terc.edu/library/bookpapers/educational_computing.pdf
Clements, D. H., & Sarama, J. (2004). Learning
Trajectories in Mathematics Education. Mathematical Thinking
and Learning, 6(2), 81–89. http://doi.org/10.1207/s15327833mtl0602_1
Clements, McKenzie(Ken)A. (2014). Fifty Years of
Thinking About Visualization and Visualizing in Mathematics Education: A
Historical Overview. In M. N. Fried & T. Dreyfus (Eds.),
Mathematics & Mathematics Education:
Searching for Common Ground (pp. 177–192). Springer
Netherlands. http://doi.org/10.1007/978-94-007-7473-5_11
Clements, M., Keitel, C., Bishop, A., Kilpatrick, J., & Leung, F.
(2013). From the Few to the Many: Historical
Perspectives on Who Should Learn Mathematics. In M. A. (Ken).
Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung
(Eds.), Third International Handbook of
Mathematics Education (Vol. 27, pp. 7–40). Springer New
York. http://doi.org/10.1007/978-1-4614-4684-2_1
Cobb, P. (2003). Chapter 1: Investigating Students’
Reasoning about Linear Measurement as a Paradigm Case of Design
Research. In Supporting Students’
Development of Measuring Conceptions: Analyzing Students’ Learning in
Social Context (Vol. 12, pp. 1–16). Retrieved from http://www.jstor.org/stable/30037718
Cobb, P. (2007). Putting philosophy to work. Coping
with multiple theoretical frameworks. In F. K. Lester (Ed.),
Second handbook of research on mathematics
teaching and learning: a project of the National Council of Teachers of
Mathematics (Vol. 1, pp. 3–38).
Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L.
(2003). Design experiments in educational
research. Educational Researcher, 32(1), 9–13.
Cobb, P., Jackson, K., & Dunlap, C. (2014). Design research: An analysis and critique. In L.
English & D. Kirshner (Eds.), Handbook of
international research in mathematics education. Retrieved
from http://peabody.vanderbilt.edu/docs/pdf/tl/dr-chpt-international-handbook.pdf
Cobb, P., & Steffe, L. (1983). The
constructivist researcher as teacher and model builder.
Journal for Research in Mathematics Education, 14(2),
83–94. Retrieved from http://www.jstor.org/stable/748576
Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in classroom mathematical practices.
Journal of the Learning Sciences, 10(1), 113–163.
Retrieved from http://aim.psch.uic.edu/documents/cobb\_p\_etal\_inpr.pdf
Cobb, P., & Whitenack, J. (1996). A method for
conducting longitudinal analyses of classroom videorecordings and
transcripts. Educational Studies in Mathematics,
30(3), 213–228. http://doi.org/10.1007/BF00304566
Cobb, P., & Yackel, E. (1996). Constructivist,
emergent, and sociocultural perspectives in the context of developmental
research. Educational Psychologist, 31(3),
175–190.
Cobb, P., Yackel, E., & Wood, T. (1992). A
Constructivist Alternative to the Representational View of Mind in
Mathematics Education. Journal for Research in Mathematics
Education, 23(1), 2–33.
Cobern, W. W. (1996). Worldview theory and
conceptual change in science education. Science
Education, 80(5), 579–610.
Cobo, Cristóbal. (2009). Strategies to promote
the development of e-competences in the next generation of
professionals: European and International trends. SKOPE
Issues Paper Series.
Cobo, C. (2013). Skills for innovation: envisioning
an education that prepares for the changing world. Curriculum
Journal, 24(1), 67–85. http://doi.org/10.1080/09585176.2012.744330
Cohen, S. (n.d.). The Challenging Concept of Change
Over Time. Retrieved from http://www.historycooperative.org/journals/whc/6.2/cohen.html
Cole, M., Engeström, Y., Sannino, A., Gutiérrez, K., Jurow, S., Packer,
M., … Miller, S. (2014). Toward an argumentative
grammar for socio-cultural/cultural-historical activity approaches to
design research. In ICLS 2014 Proceedings
(pp. 1254–1263). Retrieved from http://www.isls.org/icls2014/downloads/ICLS%202014%20Volume%203%20%28PDF%29-wCover.pdf
Coll, R. K., France, B., & Taylor, I. (2005). The role of models and analogies in science education:
implications from research. International Journal of Science
Education, 27(2), 183–198. http://doi.org/10.1080/0950069042000276712
Coll, R. K., & Lajium, D. (2011). Modeling and
the Future of Science Learning. In M. S. Khine & I. M. Saleh
(Eds.), Models and Modeling (Vol.
6, pp. 3–21). Springer Netherlands.
Collins, A., & Brown, J. (1986). The
Computer as a Tool for Learning through Reflection. Technical Report No.
376. Center for the Study of Reading.
Collins, A., Brown, J., & Holum, A. (1991). Cognitive apprenticeship: Making thinking visible.
American Educator, 15(3), 6–11.
Collins, A., & Halverson, R. (2009). Rethinking education in the age of technology. The
digital revolution and schooling in America. New York:
Teachers College Press.
Collins, A., & Halverson, R. (2010). The second
educational revolution: rethinking education in the age of
technology. Journal of Computer Assisted Learning,
26(1), 18–27. http://doi.org/10.1111/j.1365-2729.2009.00339.x
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological
issues. Journal of the Learning Sciences,
13(1), 15–42. Retrieved from http://www.siumed.edu/dme/jc\_articles/Shin\_DesignResearch\_0217.pdf
Confrey, J. (1994). Splitting, similarity, and rate
of change: A new approach to multiplication and exponential
functions. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the
learning of mathematics (pp. 291–330). SUNY Press, Albany,
NY.
Confrey, J., & Costa, S. (1996). A critique of
the selection of “mathematical objects” as a central
metaphor for advanced mathematical thinking. International
Journal of Computers for Mathematical Learning, 1(2),
139–168. Retrieved from http://www.springerlink.com/content/j5867663g1gt2463/fulltext.pdf
Confrey, Jere, & Smith, E. (1994). Comments on
James Kaput’s Chapter. In A. Schoenfeld (Ed.), Mathematical Thinking and Problem-Solving
(pp. 172–193). Hillsdale: Lawrence Erlbaum.
Confrey, J., & Smith, E. (1994). Exponential
functions, rates of change, and the multiplicative unit.
Educational Studies in Mathematics, 26(2), 135–164.
Retrieved from http://www.jstor.org/stable/3482782
Confrey, J., & Smith, E. (1995). Splitting,
covariation, and their role in the development of exponential
functions. Journal for Research in Mathematics
Education, 26(1), 66–86.
Conlon, T. (2000). Visions of change: information
technology, education and postmodernism. British Journal of
Educational Technology, 31(2), 109–116. http://doi.org/10.1111/1467-8535.00141
Corbin, J., & Strauss, A. (2008). Basics of
qualitative research: Techniques and procedures for developing grounded
theory (3e ed.). Sage.
Cornu, B. (1991). Limits. In D. Tall (Ed.),
Advanced Mathematical Thinking (Vol. 11, pp.
153–166). Springer Netherlands. Retrieved from http://dx.doi.org/10.1007/0-306-47203-1_10
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K.,
& Vidakovic, D. (1996). Understanding the limit
concept: Beginning with a coordinated process scheme. Journal
of Mathematical Behavior, 15(2), 167–192. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.7665&rep=rep1&type=pdf
Council, C. for the W. on C. T. N. R. (2010). Report of a Workshop on The Scope and Nature of
Computational Thinking. The National Academies Press.
Retrieved from http://www.nap.edu/openbook.php?record_id=12840
Council, C. for the W. on C. T. N. R. (2011). Report of a Workshop on the Pedagogical Aspects of
Computational Thinking. The National Academies Press.
Retrieved from http://www.nap.edu/openbook.php?record_id=13170
Cox, G., & Garcia Garcia, G. (2008). Diagrams
in the UK National School Curriculum. In Diagrammatic representation and inference: 5th
international conference, Diagrams 2008, Herrsching, Germany, September
19-21, 2008: proceedings (Vol. 5223, pp. 360–363).
Springer-Verlag New York Inc.
Cox, R. (1999). Representation construction,
externalised cognition and individual differences. Learning
and Instruction, 9(4), 343–363. http://doi.org/10.1016/S0959-4752(98)00051-6
Cramer, K. (2001). Using models to build
middle-grade students’ understanding of functions.
Mathematics Teaching in the Middle School, 6(1).
Retrieved from http://www.cehd.umn.edu/rationalnumberproject/01_1.html
Cronin, M. A., Gonzalez, C., & Sterman, J. D. (2009). Why don’t well-educated adults understand accumulation? A
challenge to researchers, educators, and citizens.
Organizational Behavior and Human Decision Processes,
108(1), 116–130. http://doi.org/10.1016/j.obhdp.2008.03.003
Crook, C. (1998). Children as computer users: the
case of collaborative learning. Computers &
Education, 30(3-4), 237–247.
Davis, E. (2000). Scaffolding students’ knowledge
integration: prompts for reflection in KIE. International
Journal of Science Education, 22(8), 819–837.
http://doi.org/10.1080/095006900412293
Davis, E. (2003). Prompting Middle School Science
Students for Productive Reflection: Generic and Directed Prompts.
Journal of the Learning Sciences, 12(1), 91–142.
http://doi.org/10.1207/S15327809JLS1201_4
Davis, N., & Loveless, A. (2011). Reviewing the
landscape of ICT and teacher education over 20 years and looking forward
to the future. Technology, Pedagogy and Education,
20(3), 247–261. http://doi.org/10.1080/1475939X.2011.610928
Davis, R. (1994). What mathematics should students
learn? The Journal of Mathematical Behavior,
13(1), 3–33. http://doi.org/10.1016/0732-3123(94)90031-0
Dawson, M. R. W. (2004). Minds and machines.
Connectionism and psychological modeling. Blakwell
Publishing.
De Wever, B., Schellens, T., Valcke, M., & Van Keer, H. (2006).
Content analysis schemes to analyze transcripts of
online asynchronous discussion groups: A review. Computers
& Education, 46(1), 6–28.
DeBoer, G. E. (2000). Scientific literacy: Another
look at its historical and contemporary meanings and its relationship to
science education reform. Journal of Research in Science
Teaching, 37(6), 582–601.
Dede, C. (2000). Emerging influences of information
technology on school curriculum. Journal of Curriculum
Studies, 32(2), 281–303. http://doi.org/10.1080/002202700182763
Dede, C. (2004). Commentaries: If Design-Based
Research is the Answer, What is the Question? A Commentary on Collins,
Joseph, and Bielaczyc; diSessa and Cobb; and Fishman, Marx, Blumenthal,
Krajcik, and Soloway in the JLS Special Issue on Design-Based
Research. Journal of the Learning Sciences,
13(1), 105–114. Retrieved from http://inkido.indiana.edu/design/dede.doc
Dede, C. (2005). Planning for
“neomillennial” learning styles: Implications for
investments in technology and faculty. In
In (pp. 226–247). EDUCAUSE Publishers.
Dede, C. (2008). Theoretical Perspectives
Influencing the Use of Information Technology in Teaching and
Learning. In J. Voogt & G. Knezek (Eds.), International Handbook of Information Technology in
Primary and Secondary Education (Vol. 20, pp. 43–62).
Springer US. http://doi.org/10.1007/978-0-387-73315-9_3
Dede, C. (2010). Comparing frameworks for 21st
century skills. 21st Century Skills: Rethinking How Students
Learn, 51–76.
DeHart Hurd, P. (1998). Scientific literacy: New
minds for a changing world. Science Education,
82(3), 407–416.
Dekker, R., & Elshout-Mohr, M. (1998). A
process model for interaction and mathematical level raising.
Educational Studies in Mathematics, 35(3), 303–314.
Dewey I. Dykstra, Jr., & Sweet, D. R. (2009). Conceptual development about motion and force in
elementary and middle school students. American Journal of
Physics, 77(5), 468–476. http://doi.org/10.1119/1.3090824
Dierdorp, A., Bakker, A., Eijkelhof, H., & Maanen, J. van. (2011).
Authentic Practices as Contexts for Learning to
Draw Inferences Beyond Correlated Data. Mathematical Thinking
and Learning, 13(1-2), 132–151. http://doi.org/10.1080/10986065.2011.538294
Dijksterhuis, E. J. (1950). De mechanisering
van het wereldbeeld. J.M. Meulenhoff.
Dillenbourg, P. (1999). What do you mean by
collaborative learning? In P. Dillenbourg (Ed.), Collaborative-learning: Cognitive and computational
approaches. (pp. 1–19). Oxford: Elsevier.
Dillenbourg, P., & Hong, F. (2008). The
mechanics of CSCL macro scripts. International Journal of
Computer-Supported Collaborative Learning, 3(1), 5–23.
diSessa, A. (1986). Artificial worlds and real
experience. Instructional Science, 14(3),
207–227.
diSessa, A. (1988). Knowledge in pieces.
Constructivism in the Computer Age, 49–70. Retrieved from http://131.193.130.213/media//disessa\_a\_1988.pdf
diSessa, A. (1991a). If we want to get ahead, we
should get some theories. In Proceedings
of the Annual Meeting of the North American Chapter, International Group
for the Psychology of Mathematics Education: Plenary papers
(pp. 220–239). Retrieved from http://www.eric.ed.gov/PDFS/ED352274.pdf
diSessa, A. (1991b). Local sciences: Viewing the
design of human-computer systems as cognitive science. In J. M.
Carroll (Ed.), Designing interaction.
Psychology at the human-computer interface (pp. 162–202).
Cambridge University Press.
diSessa, A. (1995). The Many Faces of a
Computational Medium: Teaching the Mathematics of Motion. In A.
diSessa, C. Hoyles, R. Noss, & L. D. Edwards (Eds.), Computers and Exploratory Learning (pp.
337–359). Springer.
diSessa, A. (2001). Changing minds: Computers,
learning, and literacy. The MIT Press.
diSessa, A. (2002). Students’ criteria for
representational adequacy. In K. Gravemeijer, R. Lehrer, B. van
Oers, & L. Verschaffel (Eds.), Symbolizing,
Modeling and Tool Use in Mathematics Education (pp.
105–130). Kluwer Academic Publishers.
diSessa, A. (2006). A history of conceptual change
research. In R. K. Sawyer (Ed.), The
Cambridge handbook of the learning sciences (pp. 265–281).
Cambridge University Press.
diSessa, A., & Abelson, H. (1986). Boxer: a
reconstructible computational medium. Communications of the
ACM, 29, 859–868. http://doi.org/10.1145/6592.6595
diSessa, A., & Cobb, P. (2004). Ontological
innovation and the role of theory in design experiments.
Journal of the Learning Sciences, 13(1), 77–103.
diSessa, A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing Graphing: Meta-Representational Expertise in
Children. Journal of Mathematical Behavior,
10(2), 117–60.
diSessa, A., & Sherin, B. L. (2000). Meta-representation: an introduction. The
Journal of Mathematical Behavior, 19(4), 385–398.
http://doi.org/10.1016/S0732-3123(01)00051-7
Doerr, H. M. (1995). An Integrated Approach to
Mathematical Modeling: A Classroom Study. In Annual Meeting of the American Educational Research
Association, April 18, 1995, San Francisco, Ca. Retrieved
from http://eric.ed.gov/PDFS/ED387349.pdf
Dooren, W. van, Bock, D. de, & Verschaffel, L. (2013). How Students Connect Descriptions of Real-World
Situations to Mathematical Models in Different Representational
Modes. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown
(Eds.), Teaching Mathematical Modelling:
Connecting to Research and Practice (pp. 385–393). Springer
Netherlands. http://doi.org/10.1007/978-94-007-6540-5_32
Doorman, M. (2003). Inzicht in snelheid en
afgelegde weg via grafieken. Tijdschrift Voor Didactiek Der
bèta-Wetenschappen, 20(1), 1–25. Retrieved
from http://www1.phys.uu.nl/wwwcdb/tdb/fulltext/Doorman_2003.pdf
Doorman, M. (2005). Modelling motion: from
trace graphs to instantaneous change (PhD thesis). Utrecht
University, the Netherlands.
Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H.
(2012). Tool use and the development of the
function concept: from repeated calculations to functional
thinking. International Journal of Science and Mathematics
Education, 10(6), 1243–1267.
Doorman, M., & Gravemeijer, K. (2009). Emergent
modeling: discrete graphs to support the understanding of change and
velocity. ZDM Mathematics Education, 41,
199–211.
Doorman, M., & Maanen, J. van. (2008). A
Historical Perspective on Teaching and Learning Calculus.
Australian Senior Mathematics Journal, 22(2), 4–14.
Dorst, K. (2011). The core of ‘design
thinking’ and its application. Design
Studies, 32(6), 521–532. http://doi.org/10.1016/j.destud.2011.07.006
Dragon, T., & Woolf, B. P. (2007). Understanding and advising students from within an
inquiry tutor.
Driel, J. H. van, & Verloop, N. (2002). Experienced teachers’ knowledge of teaching and learning
of models and modelling in science education. International
Journal of Science Education, 24(12), 1255–1272.
Drijvers, P., Kieran, C., Mariotti, M. A., Ainley, J., Andresen, M.,
Chan, Y. C., et al.others. (2010). Integrating
technology into mathematics education: Theoretical perspectives.
Mathematics Education and Technology-Rethinking the Terrain,
89–132.
Dubinksy, E. (2000). Mathematical literacy and
abstraction in the 21st century. School Science and
Mathematics, 100(6), 289–297. Retrieved from http://www.math.kent.edu/~edd/NiessPaper.pdf
Dubinsky, E. (1991). Reflective abstraction in
advanced mathematical thinking. In Advanced mathematical thinking (pp. 95–126).
Springer. Retrieved from http://www.math.wisc.edu/~wilson/Courses/Math903/ReflectiveAbstraction.pdf
Dubinsky, Ed. (1994). Comments on James Kaput’s
Chapter. In A. Schoenfeld (Ed.), Mathematical Thinking and Problem-Solving
(pp. 157–171). Hillsdale: Lawrence Erlbaum.
Duffin, J. M., & Simpson, A. P. (2000). A
search for understanding. The Journal of Mathematical
Behavior, 18(4), 415–427.
Duit, R. (1991). On the role of analogies and
metaphors in learning science. Science Education,
75(6), 649–672.
Duit, R., & Treagust, D. F. (2003). Conceptual
change: a powerful framework for improving science teaching and
learning. International Journal of Science Education,
25(6), 671–688.
Ebersbach, M., Van Dooren, W., Goudriaan, M., & Verschaffel, L.
(2010). Discriminating Non-linearity from
Linearity: Its Cognitive Foundations in Five-Year-Olds.
Mathematical Thinking and Learning, 12(1), 4–19.
Ebersbach, M., Van Dooren, W., & Verschaffel, L. (2011). Knowledge on accelerated motion as measured by implicit
and explicit tasks in 5 to 16 year olds. International
Journal of Science and Mathematics Education, 9, 25–46.
Retrieved from http://dx.doi.org/10.1007/s10763-010-9208-5
Ebersbach, M., & Wilkening, F. (2007). Children’s Intuitive Mathematics: The Development of
Knowledge About Nonlinear Growth. Child Development,
78(1), 296–308.
Edge, D. (2005). Mathematics education research:
designing, implementing and concluding. The Mathematics
Educator, 9(1), 1–11.
Edgerton, S. (1985). The renaissance development of
the scientific illustration. In J. W. Shirley & F. D. Hoenger
(Eds.), Science and the arts in the
renaissance (pp. 168–197). Associated University Press.
Retrieved from http://faculty.winthrop.edu/kosterj/scholarly/ARTH480/edgerton.pdf
Edwards, L. D. (1995). Microworlds as
representations. In A. A. diSessa, C. Hoyles, R. Noss, & L.
D. Edwards (Eds.), Computers and exploratory
learning (pp. 127–154). Springer.
Edwards, L. D. (1998). Embodying mathematics and
science: Microworlds as representations. The Journal of
Mathematical Behavior, 17(1), 53–78.
Eerde, H. van. (2013). Design research: Looking in
to the heart of mathematics education. In Zulkardi (Ed.),
Proceeding of the first Southeast Asian
Design/Development Research Conference (pp. 1–10). Sriwijaya
university.
Eijck, M. van, & Roth, W. (2010). Theorizing
scientific literacy in the wild. Educational Research
Review, 5(2), 184–194. http://doi.org/10.1016/j.edurev.2010.03.002
Eisenberg, M. (1995). Creating software
applications for children: Some thoughts about design. In A. A.
diSessa, C. Hoyles, R. Noss, & L. D. Edwards (Eds.), Computers and Exploratory Learning (pp.
175–196). Springer.
Elby, A. (2000). What students’ learning of
representations tells us about constructivism. The Journal of
Mathematical Behavior, 19(4), 481–502.
Elia, I., Panaoura, A., Eracleous, A., & Gagatsis, A. (2007). Relations between secondary pupils’
conceptions about functions and problem solving in different
representations. International Journal of Science and
Mathematics Education, 5(3), 533–556. Retrieved from http://www.springerlink.com/content/xqu7p752m8552434/fulltext.pdf
Ellis, Carolyn, Adams, T., & Bochner, A. (2010).
Autoethnography: An Overview. Forum Qualitative
Sozialforschung / Forum: Qualitative Social Research,
12(1). Retrieved from http://www.qualitative-research.net/index.php/fqs/article/view/1589
Ellis, C., & Bochner, A. (2000). Autoethnography, personal narrative, reflexivity:
Researcher as subject. In N. Denzin & Y. Lincoln (Eds.),
The Handbook of Qualitative
Research (pp. 733–768). Sage.
Eng, T. S. (2005). The impact of ICT on learning: A
review of research. International Education Journal Vol 6, No
5, 2005 i, 6(5), 635–650. Retrieved from http://www.eric.ed.gov/PDFS/EJ855017.pdf
Engelhardt, P. V., Corpuz, E. G., Ozimek, D. J., & Rebello, N. S.
(2004). The Teaching Experiment – What it is and
what it isn’t. In 2003 Physics Education Research
Conference (Vol. 720, pp. 157–160). American Institute of
Physics, 2 Huntington Quadrangle, Suite 1 NO 1, Melville, NY,
11747-4502, USA,.
Ergazaki, M., Komis, V., & Zogza, V. (2005). High-school students’ reasoning while
constructing plant growth models in a computer-supported educational
environment. International Journal of Science Education,
27(8), 909–933.
Ernest, P. (2006). Reflections on theories of
learning. ZDM, 38(1), 3–7.
Ernest, Paul. (2010). Commentary 2 on Reflections
on Theories of Learning. In Bharath Sriraman & L. English
(Eds.), Theories of Mathematics
Education (pp. 53–61). Springer Berlin Heidelberg. Retrieved
from http://dx.doi.org/10.1007/978-3-642-00742-2_6
Estrada-Medina, J., & Arenas-Sánchez, E. (2006). Understanding the relation between accumulation and its
rate of change in a computational environment through simulation of
dynamic situations. In Proceedings of
the 28th annual meeting of the North American Chapter of the
International Group for the Psychology of mathematics
Education (Vol. 2, pp. 850–855). Retrieved from http://www.pmena.org/2006/cd/TECHNOLOGY/TECHNOLOGY-0000.pdf
Fagan, E. R. (2002). A summary of the research on
student graphing misconceptions and their roots. Retrieved from
http://www2.edc.org/edc-research/curriki/ROLE/lc/sessions/session6/MisconOnGraphs.pdf
Falbel, A. (1991). The computer as a convivial
tool. In I. Harel & S. Papert (Eds.),
Constructionism (pp. 29–37).
Fann, K. T. (1970). Peirce’s theory of
abduction. The Hague: Martinus Nijhoff. Retrieved from http://www.dca.fee.unicamp.br/~gudwin/ftp/ia005/Peirce%20Theory%20of%20Abduction.pdf
Ferrari, A., Cachia, R., & Punie, Y. (2011). Educational Change through Technology: A Challenge for
Obligatory Schooling in Europe. In C. Kloos, D. Gillet, RaquelM.
Crespo García, F. Wild, & M. Wolpers (Eds.), Towards
Ubiquitous Learning (Vol. 6964, pp. 97–110). Springer Berlin
Heidelberg. http://doi.org/10.1007/978-3-642-23985-4_9
Ferrari, A., Punie, Y., & Redecker, C. (2012). Understanding Digital Competence in the 21st Century: An
Analysis of Current Frameworks. In A. Ravenscroft, S. Lindstaedt,
C. Kloos, & D. Hernández-Leo (Eds.), 21st
Century Learning for 21st Century Skills (Vol. 7563, pp.
79–92). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-33263-0_7
Feurzeig, W. (2010). Toward a Culture of
Creativity: A Personal Perspective on Logo’s Early Years
and Ongoing Potential. International Journal of Computers for
Mathematical Learning, 15, 257–265. Retrieved from http://dx.doi.org/10.1007/s10758-010-9168-4
Figueiredo, N., Galen, F. van, & Gravemeijer, K. (2009). The actor’s and observer’s
point of view: A geometry applet as an example. Educational
Designer, 1(3). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue3/article10
Fishman, B., Marx, R. W., Blumenfeld, P., Krajcik, J., & Soloway, E.
(2004). Creating a framework for research on
systemic technology innovations. Journal of the Learning
Sciences, 13(1), 43–76. Retrieved from http://www.umich.edu/~hiceweb/downloads/JLS13\_1\_pp43\_76.pdf
Forbus, K. D. (2008). Qualitative modeling.
In F. van Harmelen, V. Lifschitz, & B. Porter (Eds.), Handbook of Knowledge Representation (pp.
361–393). Elsevier.
Ford, M. J. (2003). Representing and meaning in
history and in classrooms: developing symbols and conceptual
organizations of free-fall motion. Science &
Education, 12(1), 1–25.
Ford, M., Frederickson, A., & Martin, L. (2000). The Interpretation of Symbol Schemes in a Computational
Medium. Retrieved from http://www.eric.ed.gov/PDFS/ED443404.pdf
Forster, P. A. (2004). Conceptualising Motion Through Dynamic
Graphing. In.
Freudenthal, H. (1971). Geometry between the devil
and the deep sea. Educational Studies in Mathematics,
3(3), 413–435.
Freudenthal, Hans. (1976). Wiskundeonderwijs anno
2000. Euclides, 52(8), 294. Retrieved from http://www.fisme.science.uu.nl/publicaties/literatuur/7205.pdf
Freudenthal, H. (1978). Weeding and sowing:
Preface to a science of mathematical education. Springer.
Freudenthal, H. (1983). Didactical
phenomenology of mathematical structures. Dordrecht: D.
Reidel Publishing Company.
Freudenthal, H. (1991). Revisiting mathematics
education: China lectures (Vol. 9). Springer.
Frey, C., & Osborne, M. (2013). The future of
employment: how susceptible are jobs to computerisation?
Retrieved from http://www.futuretech.ox.ac.uk/sites/futuretech.ox.ac.uk/files/The_Future_of_Employment_OMS_Working_Paper_0.pdf
Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making Sense of Graphs: Critical Factors Influencing
Comprehension and Instructional Implications. Journal for
Research in Mathematics Education, 32(2), pp. 124–158.
Friendly, M. (2008). A Brief History of Data
Visualization. In Handbook of Data
Visualization (pp. 15–56). Springer Berlin Heidelberg.
http://doi.org/10.1007/978-3-540-33037-0_2
Frigg, R., & Hartmann, S. (2012). Models in
Science. In E. N. Zalta (Ed.), The
Stanford Encyclopedia of Philosophy (Fall 2012). http://plato.stanford.edu/archives/fall2012/entries/models-science/.
Frigg, R., & Reiss, J. (2009). The philosophy
of simulation: hot new issues or same old stew?
Synthese, 169(3), 593–613. http://doi.org/10.1007/s11229-008-9438-z
Furinghetti, F. (2007). Teacher education through
the history of mathematics. Educational Studies in
Mathematics, 66, 131–143.
Gaisman, M. T., & Martínez-Planell, R. (2011). How are graphs of two vvariable taught? In
Proceedings of the Annual Meeting of the North
American Chapter of the International Group for the Psychology of
Mathematics Education, University of Nevada, Reno, Reno, NV.
Galen, F. van, & Gravemeijer, K. (2009). Dynamische grafieken op de basisschool.
Galen, F. van, & Gravemeijer, K. (2010). Dynamische grafieken op de basisschool.
Ververs foundation. Retrieved from http://www.fi.uu.nl/rekenweb/grafiekenmaker/documents/dynamischegrafieken.pdf
Galen, F. van, Gravemeijer, K., Mulken, F. van, & Quant, E. (2012).
Kinderen ononderzoeken ’snelheid’.
Retrieved from http://www.fisme.science.uu.nl/rekenweb/grafiekenmaker/documents/kinderenonderzoekensnelheid.pdf
Garcia, G. G., & Cox, R. (2010). "Graph-as-Picture" Misconceptions in Young
Students. In Diagrammatic Representation
and Inference: 6th International Conference, Diagrams 2010, Portland,
USA, August 9-11, 2010, Proceedings (pp. 310–312).
Springer-Verlag.
Garcia Garcia, G., & Cox, R. (n.d.). Children
who interpret graphs as pictures. Retrieved from http://celstec.org/system/files/file/conference_proceedings/aeid2009/papers/paper_163.pdf
Gardner, M. (1970). Mathematical games: The
fantastic combinations of John Conway’s new solitaire game
“life”. Scientific American,
223(4), 120–123. Retrieved from http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
Ge, X., & Land, S. M. (2003). Scaffolding
students’ problem-solving processes in an ill-structured
task using question prompts and peer interactions.
Educational Technology Research and Development,
51(1), 21–38.
Gentner, D., & Markman, A. B. (1997). Structure
mapping in analogy and similarity. American
Psychologist, 52(1), 45–56.
Gess-Newsome, J. (1999). Pedagogical Content
Knowledge: An Introduction and Orientation. In J. Gess-Newsome
& NormanG. Lederman (Eds.), Examining Pedagogical Content
Knowledge (Vol. 6, pp. 3–17). Springer Netherlands.
http://doi.org/10.1007/0-306-47217-1_1
Gilbert, J. (2004). Models and modelling: Routes to
more authentic science education. International Journal of
Science and Mathematics Education, 2(2), 115–130.
Gilbert, J., & Boulter, C. (1998). Learning
Science Through Models and Modelling. In B. J. Fraser & K. G.
Tohin (Eds.), International handbook of science
education (pp. 53–66).
Gilbert, S. (1991). Model building and a definition
of science. Journal of Research in Science Teaching,
28(1), 73–79.
Gillies, Robyn M. (2003). Structuring cooperative
group work in classrooms. International Journal of
Educational Research, 39(1–2), 35–49.
http://doi.org/10.1016/S0883-0355(03)00072-7
Gillies, R. M. (2011). Promoting thinking,
problem-solving and reasoning during small group discussions.
Teachers and Teaching: Theory and Practice, 17(1),
73–89.
Gillies, R. M., & Boyle, M. (2005). Teachers’
scaffolding behaviours during cooperative learning.
Asia-Pacific Journal of Teacher Education, 33(3),
243–259.
Gillies, R. M., & Haynes, M. (2011). Increasing
explanatory behaviour, problem-solving, and reasoning within classes
using cooperative group work. Instructional Science,
39(3), 349–366.
Glaser, B. G., & Strauss, A. L. (1967). The
discovery of grounded theory: strategies for qualitative
research (third paperback printing 2008). New Brunswick:
Aldine Transaction.
Glasersfeld, E. von. (1981). Feedback, induction,
and epistemology. In G. Lasker (Ed.), Applied systems and cybernetics (Vol. 2, pp.
712–719). New York: Pergamon Press.
Glasersfeld, E. von. (1989). Cognition,
Construction of Knowledge, and Teaching., 80(1),
121–140. Retrieved from http://www.ffst.hr/~berislav/phed/filod2007/literatura/glasersfeld.pdf
Glasersfeld, E. von. (1995). Radical
Constructivism: A Way of Knowing and Learning. Studies in Mathematics
Education Series: 6. Routledge/Falmer.
Glazer, N. (2011). Challenges with graph
interpretation: a review of the literature. Studies in
Science Education, 47(2), 183–210. http://doi.org/10.1080/03057267.2011.605307
Goedhart, M. J. (1999). The use of van Hiele levels
as a tool in the development of curricula for science education.
Research in Science Education in Europe, 65–72.
Goodchild, S. (2010). Commentary 1 on Reflections
on Theories of Learning by Paul Ernest. In Bharath Sriraman &
L. English (Eds.), Theories of Mathematics
Education (pp. 49–52). Springer Berlin Heidelberg. Retrieved
from http://dx.doi.org/10.1007/978-3-642-00742-2_5
Gould, S. J. (2011). The Hedgehog, the Fox, and
the Magister’s Pox. Mending the Gap between science and the
humanities. The Belknap Press of Harvard University Press.
Grabiner, J. V. (1983). The changing concept of
change: the derivative from Fermat to Weierstrass.
Mathematics Magazine, 56(4), 195–206.
Grant, E. (1972). Nicole Oresme and the medieval
geometry of qualities and motions. A treatise on the uniformity and
difformity of intensities known as ‘tractatus de
configurationibus qualitatum et motuum’: Marshall Clagett
(ed. and tr.), edited with an introduction, English translation and
commentary by Marshall Clagett. University of Wisconsin Press: Madison,
Milwaukee, 1968; and London, 1969. xiii+713pp. £7.75. Studies
in History and Philosophy of Science Part A, 3(2),
167–182. http://doi.org/10.1016/0039-3681(72)90022-2
Gravemeijer, K. (n.d.). Methodologische
objectiviteit en kwalitatief onderzoek.
Gravemeijer, K. (1994a). Developing realistic
mathematics education (PhD thesis). Utrecht University.
Gravemeijer, K. (1994b). Educational development
and developmental research in mathematics education. Journal
for Research in Mathematics Education, 25(5), 443–471.
Gravemeijer, K. (1999). How emergent models may
foster the constitution of formal mathematics. Mathematical
Thinking and Learning, 1(2), 155–177.
Gravemeijer, K. (2002). Preamble: From Models to
Modeling. In K. Gravemeijer, R. Lehrer, B. van Oers, & L.
Verschaffel (Eds.), Symbolizing, Modeling and
Tool Use in Mathematics Education (pp. 7–22). Kluwer
Academic Publishers.
Gravemeijer, K. (2004). Local Instruction Theories
as Means of Support for Teachers in Reform Mathematics Education.
Mathematical Thinking and Learning, 6(2), 105–128.
Gravemeijer, K. (2005). Revisiting ’Mathematics
education revisited’. Retrieved from http://www.fi.uu.nl/publicaties/literatuur/6638.pdf
Gravemeijer, K. (2007). Emergent modelling as a
precursor to mathematical modelling. In P. Galbraith, H. Henn,
& M. Niss (Eds.), Modelling and
Applications in mathematics education (pp. 137–144).
Springer.
Gravemeijer, K. (2009). Leren voor later.
Toekomstgerichte science- en techniekonderwijs voor de
basisschool. Eindhoven: Technische universiteit Eindhoven.
Retrieved from http://library.tue.nl/catalog/LinkToVubis.csp?DataBib=6:641950
Gravemeijer, K., Bowers, J., & Stephan, M. (2003). Chapter 6: Continuing the Design Research Cycle: A
Revised Measurement and Arithmetic Sequence. In Supporting Students’ Development of Measuring
Conceptions: Analyzing Students’ Learning in Social Context
(Vol. 12, pp. pp. 103–122). National Council of Teachers of Mathematics.
Retrieved from http://www.jstor.org/stable/30037723
Gravemeijer, K., & Cobb, P. (2006). Design
research from a learning design perspective. In J. Van den Akker,
K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 45–85).
Routledge London, New York. Retrieved from http://www.fi.uu.nl/publicaties/literatuur/EducationalDesignResearch.pdf
Gravemeijer, K., & Cobb, P. (2007). Ontwikkelingsonderzoek als methode voor onderzoek rond
innovatieve leergangen. Pedagogische
Studiën, 84(5), 330–339.
Gravemeijer, K., & Cobb, P. (2013). Design
research from the learning design perspective. In N. Nieveen
& T. Plomp (Eds.), Educational design
research (pp. 73–113). Enschede: SLO. Retrieved from http://international.slo.nl/publications/edr/
Gravemeijer, K., Cobb, P., Bowers, J., & Whitenack, J. (2000). Symbolizing, Modeling, and Instructional Design.
In P. Cobb, E. Yackel, & K. McClain (Eds.), Communicating and symbolizing in mathematics:
Perspectives on discourse, tools, and instructional design
(pp. 225–274).
Gravemeijer, K., & Doorman, M. (1999). Context
Problems in Realistic Mathematics Education: A Calculus Course as an
Example. Educational Studies in Mathematics,
39(1/3), 111–129. Retrieved from http://www.jstor.org/stable/3483163
Gravemeijer, K., & Eerde, D. van. (2009). Design Research as a Means for Building a Knowledge Base
for Teachers and Teaching in Mathematics Education. The
Elementary School Journal, 109(5), 1–15.
Gravemeijer, K., & Terwel, J. (2000). Hans
Freudenthal: a mathematician on didactics and curriculum theory.
Journal of Curriculum Studies, 32(6), 777–796.
Gray, E., & Tall, D. (1994). Duality,
Ambiguity, and Flexibility: A "Proceptual" View of Simple
Arithmetic. Journal for Research in Mathematics
Education, 25(2), pp. 116–140.
Gredler, M. E. (2004). Games and simulations and
their relationships to learning. In D. H. Jonassen (Ed.),
Handbook of research on educational
communications and technology (Vol. 2, pp. 571–581).
Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.3781&rep=rep1&type=pdf
Greer, B. (2010). Overview of the Papers: Why is
Linear Thinking so Dominant? Mathematical Thinking and
Learning, 12(1), 109–115. http://doi.org/10.1080/10986060903465996
Gregor, S., & Jones, D. (2007). The anatomy of
a design theory. Journal of the Association for Information
Systems, 8(5), 312–335.
Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science:
Conceptions of middle and high school students and experts.
Journal of Research in Science Teaching, 28(9),
799–822.
Grover, S., & Pea, R. (2013). Computational
Thinking in K–12: A Review of the State of the Field.
Educational Researcher, 42(1), 38–43.
http://doi.org/10.3102/0013189X12463051
Groves, S., & Doig, B. (2003). Shortest equals
fastest: upper primary childrens pre-conceptions of speed. In
International symposium elementary maths
teaching: Prague, the Czech Republic, Charles University, Faculty of
Education, August 24-29, 2003: proceedings (pp. 79–83).
Guba, E. G. (1981). Criteria for assessing the
trustworthiness of naturalistic inquiries. Educational
Technology Research and Development, 29(2), 75–91.
Guzdial, M. (1994). Software-Realized Scaffolding
to Facilitate Programming for Science Learning. Interactive
Learning Environments, 4(1), 1–44. Retrieved from http://guzdial.cc.gatech.edu/Emile-ILE.pdf
Guzdial, M. (2008). Education: Paving the Way for
Computational Thinking. Commun. ACM, 51(8),
25–27. http://doi.org/10.1145/1378704.1378713
Hadjidemetriou, C., & Williams, J. (2010). The
linearity prototype for graphs: cognitive and sociocultural
perspectives. Mathematical Thinking and Learning,
12, 68–85. Retrieved from http://www.informaworld.com/index/918797446.pdf
Halloun, I. A., & Hestenes, D. (1985a). Common
sense concepts about motion. American Journal of
Physics, 53, 1056–1065.
Halloun, I. A., & Hestenes, D. (1985b). The
initial knowledge state of college physics students. American
Journal of Physics, 53(11), 1043–1055.
Hancock, C. (1995). The Medium and the Curriculum:
Reflections on Transparent Tools and Tacit Mathematics. In
AndreaA. diSessa, C. Hoyles, R. Noss, & LaurieD. Edwards (Eds.),
Computers and Exploratory Learning
(Vol. 146, pp. 221–240). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-57799-4_12
Hancock, C., Kaput, J., & Goldsmith, L. T. (1992). Authentic Inquiry With Data: Critical Barriers to
Classroom Implementation. Educational Psychologist,
27(3), 337–364.
Harel, G., & Confrey, J. (Eds.). (1994). The
development of multiplicative reasoning in the learning of
mathematics. SUNY Press.
Harel, I. (1991). The silent observer and holistic
note taker: using video for documenting a research report. In I.
Harel & S. Papert (Eds.), Constructionism (pp.
449–466).
Harel, I., & Papert, S. (1991). Software design
as a learning environment. In I. Harel & S. Papert (Eds.),
Constructionism (pp. 41–84).
Harrington, J. (2011). Instants and Instantaneous
Velocity. Retrieved from http://philsci-archive.pitt.edu/8675/
Harrison, A. G., & Treagust, D. F. (2000). A
typology of school science models. International Journal of
Science Education, 22(9), 1011–1026. http://doi.org/10.1080/095006900416884
Hartley, J. (1996). Text design. In D. H.
Jonassen (Ed.), Handbook of research for
educational communications and technology (pp. 795–820).
Retrieved from http://www.aect.org/edtech/ed1/pdf/27.pdf
Hartshorne, C., Weiss, P., & Burks, A. (1967). Collected Papers of Charles Sanders Peirce
(Vol. 1). Harvard University Press. Retrieved from http://courses.arch.ntua.gr/fsr/138469/Peirce,%20Collected%20papers.pdf
Hassan, I., & Mitchelmore, M. (2006). The role
of abstraction in learning about rates of change. In The 29th annual conference of the Mathematics Education
Research Group of Australia (pp. 278–285).
Healy, L., & Kynigos, C. (2010). Charting the
microworld territory over time: design and construction in mathematics
education. ZDM, 42(1), 63–76.
Heer, J., & Shneiderman, B. (2012). Interactive
Dynamics for Visual Analysis. Queue, 10(2),
30:30–30:55. http://doi.org/10.1145/2133416.2146416
Hegedus, S., & Kaput, J. (2004). An
introduction to the profound potential of connected algebra activities:
Issues of representation, engagement and pedagogy. In Proceedings of the 28th Conference of the International
Group for the Psychology of Mathematics Education (Vol. 3,
pp. 129–136).
Heid, M. K., Lunt, J., Portnoy, N., & Zembat, I. O. (2006). Ways in which prospective secondary mathematics teachers
deal with mathematical complexity. In 28th annual meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education Mérida, Mexico (Vol. 2, pp. 2–9).
Herbert, S., & Pierce, R. (2005). Potential of
technology and a familiar context to enhance students’ concept of rate
of change. In MERGA 2005: Building
connections: research, theory and practice: proceedings of the annual
conference held at RMIT, Melbourne, 7th-9th July 2005 (pp.
435–442).
Herbert, S., & Pierce, R. (2008). An
‘Emergent Model’for Rate of Change.
International Journal of Computers for Mathematical Learning,
13(3), 231–249.
Herbert, S., & Pierce, R. (2009). Revealing
conceptions of rate of change. In Crossing divides: Proceedings of the 32nd annual
conference of the Mathematics Education Research Group of
Australasia (pp. 217–224).
Herbert, S., & Pierce, R. (2011). What is rate?
Does context or representation matter? Mathematics Education
Research Journal, 23, 455–477. http://doi.org/10.1007/s13394-011-0026-z
Herbert, S., & Pierce, R. (2012). Revealing
educationally critical aspects of rate. Educational Studies
in Mathematics, 81(1), 85–101. http://doi.org/10.1007/s10649-011-9368-4
Herheim, R., Krumsvik, R. J., et al. (2011). Verbal
communication at a stand-alone computer. Journal for
Educational Research Online, 3(1), 29–55.
Hestenes, D. (2006). Notes for a modeling theory of
science, cognition and instruction, 20–25. Retrieved from http://www.girep.org/proceedings/conference2006/David_Hestenes_-_Notes_for_a_Modeling_Theory_of_Science,_Cognition_and_Instruction.pdf
Heuvel-Panhuizen, M. van den. (2001). Realistic
mathematics education as work in progress. In F. L. Lin (Ed.),
Common sense in mathematics education.
Proceedings of 2001 the netherlands and taiwan conference on mathematics
education, taiwan, 19-23 november 2001. Retrieved from http://www.staff.science.uu.nl/~heuve108/download/vdHeuvel_2001_RME%20as%20work-in-progress.pdf
Heuvel-Panhuizen, M. van den. (2003). The
didactical use of models in realistic mathematics education: An example
from a longitudinal trajectory on percentage. Educational
Studies in Mathematics, 54(1), 9–35.
Heytesbury, W. (1335). In M. Clagett (Ed.), The
Science of Mechanics in the Middle Ages.
Hiele, P. M. van. (1986). Structure and
insight. A theory of mathematics education. London: Academic
press.
Hipkins, R., Barker, M., & Bolstad, R. (2005). Teaching the ‘nature of
science’: modest adaptations or radical
reconceptions? International Journal of Science
Education, 27(2), 243–254. http://doi.org/10.1080/0950069042000276758
Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry
learning: A response to Kirschner, Sweller, and Clark (2006).
Educational Psychologist, 42(2), 99–107. Retrieved
from http://www.usc.edu/dept/education/cogtech/publications/hmelo_ep07.pdf
Hoadley, C. P. (2002). Creating context:
Design-based research in creating and understanding CSCL. In
Proceedings of the Conference on Computer
Support for Collaborative Learning: Foundations for a CSCL
Community (pp. 453–462). International Society of the
Learning Sciences.
Hodson, D. (2003). Time for action: Science
education for an alternative future. International Journal of
Science Education, 25(6), 645–670. http://doi.org/10.1080/09500690305021
Hodson, D. (2006). Why we should prioritize
learning about science. Canadian Journal of Math, Science
& Technology Education, 6(3), 293–311.
Hogue, R. J. (2013). Epistemological Foundations of
Educational Design Research. In World
Conference on E-Learning in Corporate, Government, Healthcare, and
Higher Education (Vol. 2013, pp. 1915–1922).
Howe, C., Tolmie, A., Duchak-Tanner, V., & Rattray, C. (2000). Hypothesis testing in science: group consensus and the
acquisition of conceptual and procedural knowledge. Learning
and Instruction, 10(4), 361–391. http://doi.org/10.1016/S0959-4752(00)00004-9
Hoyles, C., & Noss, R. (2003). What can digital
technologies take from and bring to research in mathematics
education. In Second international
handbook of mathematics education (Vol. 1, pp. 323–349).
Hoyles, C., & Noss, R. (2008). Next steps in
implementing Kaput’s research programme.
Educational Studies in Mathematics, 68(2), 85–97.
Hoyles, C., Noss, R., & Adamson, R. (2002). Rethinking the microworld idea. Journal of
Educational Computing Research, 27(1), 29–53.
Humphreys, P. (2009). The philosophical novelty of
computer simulation methods. Synthese, 169(3),
615–626. http://doi.org/10.1007/s11229-008-9435-2
Hunt, B., Lamendella, R., Garrison, S., Burrows, A., Borowczak, M.,
& Kukreti, A. (2010). Go with the flow:
Describing storm water runoff rates using the derivative.
American Society for Engineering Education. Retrieved from https://www.uwplatt.edu/~buechlerd/AC2010-2133.pdf
Illari, P. (Ed.). (2013). The Philosophy of
Information - a Simple Introduction. Retrieved from http://socphilinfo.org/sites/default/files/i2pi_2013.pdf
Inspectie van het Onderwijs. (2005). Techniek
in het basisonderwijs. Inspectie van het Onderwijs.
Retrieved from http://www.onderwijsinspectie.nl/binaries/content/assets/Actueel_publicaties/2005/Techniek+in+het+basisonderwijs.pdf
Inspectie van het Onderwijs. (2010). Onderwijsverslag
2008/2009. Inspectie van het Onderwijs. Retrieved from http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/publicaties-pb51/onderwijsverslag-2008-2009/de-staat-van-het-onderwijs.pdf
Issues, I. A. P. on I. (2003). 2003 Statement: Science
Education. Retrieved from http://www.interacademies.net/default.aspx?id=7886
Jablonka, E., & Bergsten, C. (2010). Theorising
in mathematics education research: differences in modes and
quality. Nordisk Matematikkdidaktikk, 15(1),
25–52. Retrieved from http://pure.ltu.se/portal/files/4735209/Theorising_in_mathematics_education_research.pdf
Jacobson, M. J., & Wilensky, U. (2006). Complex
systems in education: Scientific and educational importance and
implications for the learning sciences. Journal of the
Learning Sciences, 15(1), 11–34.
Jankvist, U. T. (2009). A categorization of the
“whys” and “hows” of using history in
mathematics education. Educational Studies in
Mathematics, 71(3), 235–261.
Janvier, C. (1981). Use of situations in
mathematics education. Educational Studies in
Mathematics, 12(1), 113–122. http://doi.org/10.1007/BF00386049
Janvier, C. (1987a). Conceptions and
representations: the circle as an example. In C. Janvier (Ed.),
Problems of representation in the teaching and
learning of mathematics (pp. 147–158).
Janvier, C. (1987b). Representation and
understanding: the notion of function as an example. In C.
Janvier (Ed.), Problems of representation in
the teaching and learning of mathematics (pp. 67–71).
Janvier, C. (1987c). Translation processes in
mathematics education. In C. Janvier (Ed.), Problems of representation in the teaching and learning
of mathematics (pp. 27–32).
Jermann, P., Soller, A., Muehlenbrock, M., et al. (2001). From mirroring to guiding: A review of the state of art
technology for supporting collaborative learning. In Proceedings of the European Conference on
Computer-Supported Collaborative Learning EuroCSCL-2001. Maastricht, The
Netherlands (pp. 324–331).
Johnson, Heather L. (2011). Secondary
students’ quantification of variation in rate of
change. In Proceedings of the 33rd
annual meeting of the North American Chapter of the International Group
for the Psychology of Mathematics Education. Reno, NV: University of
Nevada, Reno.
Johnson, Heather L. (2012a). Reasoning about
quantities involved in rate of change as varying simultaneously and
independently. In R. Mayes, R. Bonillia, L. L. Hatfield, & S.
Belbase (Eds.), Quantitative reasoning and
Mathematical Modeling: A Driver for STEM Integrated Education and
Teaching in Context (pp. 39–53). Retrieved from http://www.uwyo.edu/wisdome/_files/documents/johnson.pdf
Johnson, Heather L. (2012b). Reasoning about
variation in the intensity of change in covarying quantities involved in
rate of change. The Journal of Mathematical Behavior,
31(3), 313–330. http://doi.org/10.1016/j.jmathb.2012.01.001
Johnson, Heather Lynn. (2013). Using images of
intensive and extensive quantity to extend a covariation
framework. In.
Jonassen, D. H., & Strobel, J. (2006). Modeling
for meaningful learning. In Engaged
learning with emerging technologies (pp. 1–27). Retrieved
from http://www.msu.ac.zw/elearning/material/1354783745Jonassen_strobel_modeling_2006.pdf
Jones, L. V. (1971). The nature of
measurement. In R. L. Thorndike (Ed.), Educational
Measurement (2nd ed.). Washington: American Council on
Education.
Jones, S., & Scaife, M. (2000). Animated
diagrams: An investigation into the cognitive effects of using animation
to illustrate dynamic processes. In M. Anderson & P. Cheng
(Eds.), Theory and Application of
Diagrams (pp. 295–307). Berlin: Springer. Retrieved from http://www.sussex.ac.uk/Users/sarap/pdfs/Price\_diagrams2000.pdf
Jong, T. de, & Joolingen, W. R. van. (1998). Scientific Discovery Learning With Computer Simulations
of Conceptual Domains. Review of Educational Research,
68(2), 179–201.
Joram, E., Hartman, C., & Trafton, P. (2004). "As People Get
Older, They Get Taller". Teaching Children Mathematics,
345. Retrieved from http://www.math.ccsu.edu/mitchell/math409tcmaspeoplegetoldertheygettaller.pdf
Justi, R., & Gilbert, J. (2002). Modelling,
teachers’ views on the nature of modelling, and implications for the
education of modellers. International Journal of Science
Education, 24(4), 369–387.
Kafai, Y., & Harel, I. (1991a). Children
learning through consulting: when mathematical ideas, knowledge of
programming and design, and playful discourse are intertwined. In
I. Harel & S. Papert (Eds.), Constructionism
(pp. 111–140).
Kafai, Y., & Harel, I. (1991b). Learning
through design and teaching: exploring social and collaborative aspects
of constructionism. In I. Harel & S. Papert (Eds.),
Constructionism (pp. 85–110).
Kaput, J. (1994a). Democratizing access to
calculus: New routes to old roots. In A. Schoenfeld (Ed.),
Mathematical Thinking and
Problem-Solving (pp. 77–156). Hillsdale: Lawrence Erlbaum.
Kaput, J. (1994b). The representational roles of
technology in connecting mathematics with authentic experience.
In R. Biehler, R. W. Scholz, R. Sträßer, & B. Winkelmann (Eds.),
Didactics of mathematics as a scientific
discipline (pp. 379–397).
Kaput, J. (1997). Rethinking Calculus: Learning and
Thinking. The American Mathematical Monthly,
104(8), pp. 731–737. Retrieved from http://www.jstor.org/stable/2975238
Kaput, J. (1998). Representations, Inscriptions,
Descriptions and Learning: A Kaleidoscope of Windows. The
Journal of Mathematical Behaviour, 17(2), 265–281.
Kaput, J., Bar-Yam, Y., Jacobson, M., Jakobsson, E., Lemke, J., &
Wilensky, U. (2005). Planning documents for a
national initiative on complex systems in k-16 education.
Retrieved from http://www.necsi.edu/events/cxedk16/cxedk16.html
Kaput, J., Noss, R., & Hoyles, C. (2002). Developing new notations for a learnable mathematics in
the computational era. In Handbook of
international research in mathematics education (pp. 51–75).
Kaput, J., & Roschelle, J. (1998). The
mathematics of change and variation from a millennial perspective: New
content, new context. In C. Hoyles, C. Morgan, & G. Woodhouse
(Eds.), Mathematics for a new
millennium (pp. 155–170). London: Springer-Verlag. Retrieved
from http://ctl.sri.com/publications/downloads/Millenium_preprint.pdf
Kaput, J., & Schorr, R. (2007). Changing
representational infrastructures chages most everything: the case of
SimCalc, algebra and calculus. In G. Blume & K. Heid (Eds.),
Research on technology in the learning and
teaching of mathematics (pp. 211–253). Mahwah, NJ: Erlbaum.
Retrieved from http://www.kaputcenter.umassd.edu/downloads/simcalc/cc1/library/changinginfrastruct.pdf
Kaput, J., & Thompson, P. (1994). Technology in
mathematics education research: The first 25 years in the JRME.
Journal for Research in Mathematics Education, 25(6),
676–684.
Kelly, A. (2004). Design research in education:
Yes, but is it methodological? Journal of the Learning
Sciences, 13(1), 115–128.
Kelly, A. E. (2003). Theme issue: The role of
design in educational research. Educational Researcher,
32(1), 3–4.
Kelly, A. E. (2013). When is design research
appropriate? In T. Plomp & N. Nieveen (Eds.),
Educational Design Research (Vol. A, pp. 135–150).
SLO. Retrieved from http://international.slo.nl/edr
Kelly, J., Bradley, C., Gratch, J., & Maninger, R. (2007). A reflective discourse on science learning and the merits
of simulation. Journal of Thought, 42(2),
23–38.
Kennewell, S., & Beauchamp, G. (2007). The
features of interactive whiteboards and their influence on
learning. Learning, Media and Technology,
32(3), 227–241.
Keogh, B., & Naylor, S. (1999). Concept
cartoons, teaching and learning in science: an evaluation.
International Journal of Science Education, 21(4),
431–446. http://doi.org/10.1080/095006999290642
Keulen, H. van. (2009). Drijven en Zinken.
Wetenschap en techniek in het primair onderwijs. Fontys
Hogescholen. Retrieved from http://www.ecent.nl/servlet/supportBinaryFiles?referenceId=1&supportId=1969
Keulen, H. van, & Molen, J. W. van der (Eds.). (2009). Onderzoek naar wetenschap en techniek in het Nederlandse
basisonderwijs. Den Haag: Platform Bèta
Techniek.
Khine, M. S., & Saleh, I. M. (Eds.). (2011). Models and modeling: cognitive tools for scientific
enquiry (Vol. 6). Springer Science+Business Media.
Kim, M. C., & Hannafin, M. J. (2011). Scaffolding 6th graders’ problem solving in
technology-enhanced science classrooms: a qualitative case study.
Instructional Science, 39(3), 255–282.
Kind, V. (2009). Pedagogical content knowledge in
science education: perspectives and potential for progress.
Studies in Science Education, 45(2), 169–204.
http://doi.org/10.1080/03057260903142285
King, A. (2002). Structuring peer interaction to
promote high-level cognitive processing. Theory into
Practice, 41(1), 33–39.
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why Minimal Guidance During Instruction Does Not Work: An
Analysis of the Failure of Constructivist, Discovery, Problem-Based,
Experiential, and Inquiry-Based Teaching. Educational
Psychologist, 41(2), 75–86. http://doi.org/10.1207/s15326985ep4102_1
Kleiner, I. (1989). Evolution of the Function
Concept: A Brief Survey. The College Mathematics
Journal, 20(4), 282–300. Retrieved from http://stellasbuds.com/classes/assets/a_evfcn.pdf
Knowlton, D. S. (2007). I design; therefore I
research: Revealing DBR through personal narrative. JOURNAL
OF EDUCATIONAL TECHNOLOGYAND SOCIETY, 10(4), 209.
Kock, Z., Taconis, R., Bolhuis, S., & Gravemeijer, K. (2013). Some key issues in creating inquiry-based instructional
practices that aim at the understanding of simple electric
circuits. Research in Science Education, 1–19. Retrieved
from http://link.springer.com/article/10.1007/s11165-011-9278-6/fulltext.html
Koklu, O. (2007). An investigation of college
students’ covariational reasonings (PhD thesis). Florida
State University; The Florida State University. Retrieved from http://etd.lib.fsu.edu/theses/available/etd-07082007-234700/unrestricted/okokludissertation.pdf
Kolovou, A., Van den Heuvel-Panhuizen, M., & Bakker, A. (2009).
Non-routine problem solving tasks in primary school
mathematics textbooks–A needle in a haystack. Mediterranean
Journal for Research in Mathematics Education, 8(2),
31–68. Retrieved from http://www.staff.science.uu.nl/~heuve108/download/Kolovou-vdHeuvel-Bakker_2009_MJRME_textbook-analysis-problemsolving.pdf
Komorek, M., & Duit, R. (2004). The teaching
experiment as a powerful method to develop and evaluate teaching and
learning sequences in the domain of non-linear systems.
International Journal of Science Education, 26,
619–633.
Kramarski, B. (1999). The Study Of Graphs By Computers: Is Easier
Better? Educational Media International, 36(3),
203–209.
Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in
computer-supported collaborative learning environments: a review of the
research. Computers in Human Behavior, 19(3),
335–353.
Kruja, E., Marks, J., Blair, A., & Waters, R. (2002). A Short Note on the History of Graph Drawing. In
P. Mutzel, M. Jünger, & S. Leipert (Eds.), Graph
Drawing (Vol. 2265, pp. 272–286). Springer Berlin
Heidelberg. http://doi.org/10.1007/3-540-45848-4_22
Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The Development of Cognitive Skills To Support Inquiry
Learning. Cognition and Instruction, 18(4),
495–523. http://doi.org/10.1207/S1532690XCI1804_3
Kuijpers, J., Noordam, J., & Peters, S. (2009). Wetenschap en techniek in het basisonderwijs in
Nederland; ontwikkelingen in vogelvlucht. In H. van Keulen &
J. W. van der Molen (Eds.), Onderzoek naar
wetenschap en techniek in het Nederlandse basisonderwijs
(pp. 17–27). Den Haag: Platform Bèta Techniek.
Kumar, A. (1997). Pitfalls in elementary
physics. Resonance, 2(7), 75–81.
Kyza, E. A., Constantinou, C. P., & Spanoudis, G. (2011). Sixth Graders’ Co-construction of
Explanations of a Disturbance in an Ecosystem: Exploring relationships
between grouping, reflective scaffolding, and evidence-based
explanations. International Journal of Science
Education, 33(18), 2489–2525. http://doi.org/10.1080/09500693.2010.550951
Lagemann, E. C. (2000). An elusive science. The
troubling history of education research. Chicacgo: The
university of Chicago press.
Lakoff, George, & JOhnson, M. (2003). Metaphors we live by (2003rd ed.). Chicago:
The University of Chicago Press.
Lakoff, Georg, & Núñez, R. E. (2000). Where
mathematics comes from. Basic Books.
Lamberg, T., & Middleton, J. A. (2009). Design
research perspectives on transitioning from individual microgenetic
interviews to a whole-class teaching experiment. Educational
Researcher, 38(4), 233.
Lange, M. (2005). How Can Instantaneous Velocity Fulfill Its
Causal Role? The Philosophical Review, 114(4),
433–468.
Lapp, D. A., & Cyrus, V. F. (2000). Using
data-collection devices to enhance students’ understanding.
Mathematics Teacher, 93(6), 504–510. Retrieved from http://calcnet.cst.cmich.edu/faculty/lapp/MT2000.pdf
Latour, B. (1986). Visualisation and Cognition:
Drawing Things Together. Retrieved from http://www.bruno-latour.fr/articles/article/21-DRAWING-THINGS-TOGETHER.pdf
Laugksch, R. C. (2000). Scientific literacy: A
conceptual overview. Science Education, 84(1),
71–94. Retrieved from http://ci.unlv.edu/files/Laugksch_Scientific_Literacy.pdf
Laverty, J., & Kortemeyer, G. (2012). Function
plot response: A scalable system for teaching kinematics graphs.
American Journal of Physics, 80(8), 724–733.
http://doi.org/10.1119/1.4719112
Leenaars, F. A. J., Joolingen, W. R. van, & Bollen, L. (2013). Using self-made drawings to support modelling in science
education. British Journal of Educational Technology,
44(1), 82–94. http://doi.org/10.1111/j.1467-8535.2011.01272.x
Lehrer, R., Kim, M., & Schauble, L. (2007). Supporting the Development of Conceptions of Statistics
by Engaging Students in Measuring and Modeling Variability.
International Journal of Computers for Mathematical Learning,
12, 195–216. Retrieved from http://dx.doi.org/10.1007/s10758-007-9122-2
Lehrer, R., & Schauble, L. (2006). Scientific
thinking and science literacy. In K. A. Renninger, I. E. Sigel,
W. Damon, & R. M. Lerner (Eds.), Handbook
of child psychology (6th ed., Vol. 4, pp. 153–196).
Lehrer, R., & Schauble, L. (2010). What Kind of
Explanation is a Model? In M. K. Stein & L. Kucan (Eds.),
Instructional explanations in the
disciplines (pp. 9–22). Springer.
Lehrer, R., & Schauble, L. (2012). Seeding
evolutionary thinking by engaging children in modeling its
foundations. Science Education, 96(4), 701–724.
http://doi.org/10.1002/sce.20475
Lehtinen, E., Hakkarainen, K., Lipponen, L., Rahikainen, M., &
Muukkonen, H. (1999). Computer supported
collaborative learning: A review (Vol. 10). University of
Nijmegen Nijmegen.
Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, Graphs, and Graphing: Tasks, Learning, and
Teaching. Review of Educational Research,
60(1), 1–64.
Lemke, J. L. (2002). Mathematics in the middle:
Measure, picture, gesture, sign, and word. In M. Anderson, A.
Saenz-Ludlow, & S. abd C. V. Zellweger (Eds.), Educational Perspectives on Mathematics as Semiosis: From
Thinking to Interpreting to Knowing (pp. 215–234). Retrieved
from http://www.jaylemke.com/storage/Math-in-the-Middle-2002.pdf
Léna, P. (2006). Erasmus Lecture 2005 From science
to education: the need for a revolution. European
Review, 14(01), 3–21. http://doi.org/10.1017/S1062798706000020
Lerman, Stephen. (1996). Intersubjectivity in
Mathematics Learning: A Challenge to the Radical Constructivist
Paradigm? Journal for Research in Mathematics Education,
27(2), pp. 133–150. Retrieved from http://www.jstor.org/stable/749597
Lerman, S. (2000). A Case of Interpretations of
Social: A Response to Steffe and Thompson. Journal for
Research in Mathematics Education, 31(2), pp. 210–227.
Retrieved from http://www.jstor.org/stable/749752
Lesh, Richard, & Caylor, B. (2007). Introduction to the Special Issue: Modeling as
Application versus Modeling as a Way to Create Mathematics.
International Journal of Computers for Mathematical Learning,
12, 173–194. Retrieved from http://dx.doi.org/10.1007/s10758-007-9121-3
Lesh, Richard, English, L., Sevis, S., & Riggs, C. (2013). Modeling as a Means for Making Powerful Ideas Accessible
to Children at an Early Age. In S. J. Hegedus & J. Roschelle
(Eds.), The SimCalc Vision and
Contributions (pp. 419–436). Springer Netherlands.
http://doi.org/10.1007/978-94-007-5696-0_23
Lesh, R., & Harel, G. (2003). Problem solving,
modeling, and local conceptual development. Mathematical
Thinking and Learning, 5(2-3), 157–189.
Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for Developing Thought-Revealing Activities
for Students and Teachers. In A. Kelly & R. Lesh (Eds.),
Research Design in Mathematics and Science
Education (pp. 591–646). Mahwah, New Jersey: Lawrence
Erlbaum Associates. Retrieved from http://www.cehd.umn.edu/rationalnumberproject/00_2.html
Lesh, R., & Kelly, A. (2000). Multitiered
teaching experiments. In A. kelly & R. Lesh (Eds.), Research Design in Mathematics and Science
Education (pp. 197–230). Mahwah: Lawrence Erlbaum
Associates. Retrieved from http://www.cehd.umn.edu/rationalnumberproject/00_1.html
Lesh, Richard, Post, T., & Behr, M. (1987). Representations and ttranslation among representations in
mathematics learning and problem solving. In C. Janvier (Ed.),
Problems of representation in the teaching and
learning of mathematics (pp. 33–40).
Lesh, R., & Sriraman, B. (2010). Re-conceptualizing Mathematics Education as a Design
Science. Theories of Mathematics Education, 123–146.
Lester, F. K. Jr. (2010). On the theoretical,
conceptual, and philosophical foundations for research in mathematics
education. Advances in Mathematics Education, 67–85.
Lijnse, Piet. (n.d.). ‘Developmental
research’as a way to an empirically based
‘didactical structure’of science1. In
K. Kortland & K. Klaassen (Eds.), Designing
Theory-Based Teaching-Learning Sequences for Science
Education (pp. 91–101).
Lijnse, P. (2008). Modellen van/voor leren
modelleren. Tijdschrift Voor Didactiek Der
ß-Wetenschappen, 25(1), 3–24. Retrieved from
http://www.fisme.science.uu.nl/tdb/fulltext/lijnse_2008.pdf
Lipsey, M. W. (1993). Theory as method: Small
theories of treatments. New Directions for Program
Evaluation, 1993(57), 5–38.
Lobato, J. (2003). How design experiments can
inform a rethinking of transfer and vice versa. Educational
Researcher, 32(1), 17–20. Retrieved from http://aera.net/uploadedFiles/Journals_and_Publications/Journals/Educational_Researcher/3201/3201_Loboto.pdf
Lobato, Joanne, & Siebert, D. (2002). Quantitative reasoning in a reconceived view of
transfer. The Journal of Mathematical Behavior,
21(1), 87–116. http://doi.org/10.1016/S0732-3123(02)00105-0
Loewenberg Ball, D., Thames, M. H., & Phelps, G. (2008). Content Knowledge for Teaching: What Makes It
Special? Journal of Teacher Education, 59(5),
389–407. http://doi.org/10.1177/0022487108324554
Loh, B., Reiser, B. J., Radinsky, J., Edelson, D. C., Gomez, L. M.,
& Marshall, S. (2001). Developing reflective
inquiry practices: A case study of software, the teacher, and
students. In K. Crowley, C. D. Schunn, & T. Okada (Eds.),
Designing for science: Implications from
everyday, classroom, and professional settings (pp.
279–323).
Lou, Y., Abrami, P. C., Spence, J. C., Poulsen, C., Chambers, B., &
d’Apollonia, S. (1996). Within-class grouping: A
meta-analysis. Review of Educational Research,
66(4), 423–458.
Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education: cognitive,
metacognitive, social, material and epistemological
contributions. Educational Review, 64(4),
471–492.
Lourenço, O. (2012). Piaget and Vygotsky: Many
resemblances, and a crucial difference. New Ideas in
Psychology, 30(3), 281–295. http://doi.org/10.1016/j.newideapsych.2011.12.006
Lowe, R. (2004). Interrogation of a dynamic
visualization during learning. Learning and Instruction,
14(3), 257–274.
Lowe, R. (2006). Changing Perceptions of Animated
Diagrams. In D. Barker-Plummer, R. Cox, & N. Swoboda (Eds.),
Diagrammatic Representation and
Inference (Vol. 4045, pp. 168–172). Springer Berlin
Heidelberg. http://doi.org/10.1007/11783183_22
Lowrie, T., & Diezmann, C. M. (2007). Middle
school students’ interpreting graphical tasks: Difficulties within a
graphical language. In 4th East Asia
Regional Conference on Mathematics Education. Penang,
Malaysia. Retrieved from http://eprints.qut.edu.au/10491/
Määttä, E., Järvenoja, H., & Järvelä, S. (2012). Triggers of Students’ Efficacious
Interaction in Collaborative Learning Situations. Small Group
Research, 43(4), 497–522.
MacKay, D. M. (1955). Operational aspects of some
fundamental concepts of human communication. Synthese,
9(1), 182–198.
Marsden, E. (2007). Can educational experiments
both test a theory and inform practice? British Educational
Research Journal, 33(4), 565–588. Retrieved from http://www.restore.ac.uk/trials-pp/Can%20Educational%20Experiments%20both%20Test%20a%20Theory%20and%20Inform%20Practice.pdf
Marshall, J. A., & Carrejo, D. J. (2008). Students’ mathematical modeling of motion.
Journal of Research in Science Teaching, 45(2),
153–173.
Mason, J. (1992). Doing and construing mathematics
in screenspace. In Proceedings of the
15th Annual Conference of the Mathematics Education Research Group of
Australasia (pp. 1–17). Retrieved from http://www.merga.net.au/documents/Keynote_Mason_1992.pdf
Mason, J., & Waywood, A. (1996). The role of
theory in mathematics education and research. In A. J. Bishop, K.
Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics
education (pp. 1055–1089). Kluwer Academic Publishers.
Mawson, B. (2007). Factors affecting learning in
technology in the early years at school. International
Journal for Technology Education, 17, 253–269. Retrieved
from http://www.springerlink.com/content/67846707003j68v2/fulltext.pdf
Maxwell, J. A. (2004). Causal explanation,
qualitative research, and scientific inquiry in education.
Educational Researcher, 33(2), 3–11. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.4297&rep=rep1&type=pdf
Mayer, R. E. (1997). Multimedia learning: Are we
asking the right questions? Educational Psychologist,
32(1), 1–19. Retrieved from http://www.uky.edu/~gmswan3/609/mayer_1997.pdf
Mayer, Richard E. (2004). Should There Be a
Three-Strikes Rule Against Pure Discovery Learning? American
Psychologist, 59(1), 14–19. Retrieved from http://search.proquest.com/docview/614385379?accountid=27128
Mayer, Richard E., & Moreno, R. (2002). Animation as an aid to multimedia learning.
Educational Psychology Review, 14(1), 87–99.
Mayes, R., Bonilla, R., & Peterson, F. (2012). Quantitative reasoning in context. In R. Mayes, R.
Bonillia, L. L. Hatfield, & S. Belbase (Eds.), Quantitative reasoning and Mathematical Modeling: A
Driver for STEM Integrated Education and Teaching in Context
(pp. 7–38). Retrieved from http://www.uwyo.edu/wisdome/_files/documents/qrincontext_mayespeterson.pdf
McCandliss, B. D., Kalchman, M., & Bryant, P. (2003). Design experiments and laboratory approaches to learning:
Steps toward collaborative exchange. Educational
Researcher, 32(1), 14–16. Retrieved from http://www.sacklerinstitute.org/cornell/people/bruce.mccandliss/publications/publications/McCandliss.etal.2003.EdRes.pdf
McCloskey, M. (1983). Intuitive physics.
Scientific American, 248(4), 114–122. Retrieved from
http://homepage.psy.utexas.edu/homepage/faculty/Markman/PSY394/McCloskey_IntuitivePhysics.pdf
McCoy, A. C., Barger, R. H., Barnett, J., & Combs, E. (2012). Functions and the Volume of Vases. Mathematics
Teaching in the Middle School, 17(9), 530–536.
McDermott, L. C., Rosenquist, M. L., & Zee, E. H. (1987). Student difficulties in connecting graphs and physics:
Exampies from kinematics. American Journal of Physics,
55, 503–513. Retrieved from http://www.colorado.edu/physics/phys4810/phys4810_fa08/refs/McDermott2c.pdf
McGowen, M., & Tall, D. (2010). Metaphor or
Met-Before? The effects of previouos experience on practice and theory
of learning mathematics. The Journal of Mathematical
Behavior, 29(3), 169–179. Retrieved from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2010b-met-before-mcgowen.pdf
McNeill, W. H. (1998). History and the scientific
worldview. History and Theory, 37(1), 1–13.
Retrieved from http://www.historyandtheory.org/archives/feb98.html
Meij, J. van der, & Jong, T. de. (2006). Supporting students’ learning with multiple
representations in a dynamic simulation-based learning
environment. Learning and Instruction, 16(3),
199–212. http://doi.org/10.1016/j.learninstruc.2006.03.007
Meira, L. (1998). Making Sense of Instructional
Devices: The Emergence of Transparency in Mathematical Activity.
Journal for Research in Mathematics Education, 29(2),
pp. 121–142. Retrieved from http://www.jstor.org/stable/749895
Mercer, Neil, Dawes, L., Wegerif, R., & Sams, C. (2004). Reasoning as a scientist: ways of helping children to use
language to learn science. British Educational Research
Journal, 30(3), 359–377. http://doi.org/10.1080/01411920410001689689
Mercer, N., Dawes, L., Wegerif, R., Sams, C., & Fernandez, M.
(2007). Computers, literacy and thinking
together. In Teaching Secondary English
with ICT (p. 1). Open University Press.
Mercer, Neil, Wegerif, R., & Dawes, L. (1999). Children’s Talk and the Development of Reasoning in the
Classroom. British Educational Research Journal,
25(1), 95–111. http://doi.org/10.1080/0141192990250107
Merriënboer, J. J. G. van, & Kirschner, P. A. (2001). Three worlds of instructional design: State of the art
and future directions. Instructional Science,
29(4), 429–441.
Merton, R. K. (1945). Sociological Theory. American
Journal of Sociology, 50(6), pp. 462–473. Retrieved from
http://www.jstor.org/stable/2771390
Merton, R. K. (1968). Social theory and social
structure (1968 Enlarged edition). New York: The Free Press.
Meter, P., & Garner, J. (2005). The Promise and
Practice of Learner-Generated Drawing: Literature Review and
Synthesis. Educational Psychology Review,
17(4), 285–325. http://doi.org/10.1007/s10648-005-8136-3
Mevarech, Z. R., & Kramarsky, B. (1997). From
verbal descriptions to graphic representations: Stability and change in
students’ alternative conceptions. Educational Studies in
Mathematics, 32(3), 229–263. http://doi.org/10.1023/A:1002965907987
Meyer, J. H. F., & Land, R. (2003). Threshold
Concepts and Troublesome Knowledge – Linkages to Ways of Thinking and
Practising. In C. Rust (Ed.), Improving Student
Learning – Ten Years On.
Meyer, U. (2003). The metaphysics of
velocity. Philosophical Studies, 112(1),
93–102.
Millar, R., & Osborne, J. (Eds.). (1998). Beyond 2000: Science education for the
future. London: Nuffield Foundation; King’s College London.
Retrieved from http://www.nuffieldfoundation.org/fileLibrary/pdf/Beyond_2000.pdf
Mioduser, D., Nachmias, R., & Forkosh-Baruch, A. (2008). New literacies for the knowledge society. In
International handbook of information
technology in primary and secondary education (pp. 23–42).
Springer.
Molen, J. W. van der, Lange, J. de, & Kok, J. (2009). Theoretische uitgangspunten bij de professionalisering
van leraren basisonderwijs op het gebied van wetenschap en
techniek. In H. van Keulen & J. W. van der Molen (Eds.),
Onderzoek naar wetenschap en techniek in het
Nederlandse basisonderwijs (pp. 29–39). Den Haag: Platform
Bèta Techniek.
Molenaar, I., Chiu, M. M., Sleegers, P., & Boxtel, C. van. (2011).
Scaffolding of small groups’
metacognitive activities with an avatar. International
Journal of Computer-Supported Collaborative Learning, 1–24.
Molnar, A. (1997). Computers in education: A brief
history. June, 25. Retrieved from http://thejournal.com/articles/1997/06/01/computers-in-education-a-brief-history.aspx
Monteiro, C., & Ainley, J. (2010). The
interpretation of graphs: reflecting on concontext aspects.
Alexandria Revista de Educação Em Ciência
e Tecnologia, 17–30.
Moreno-Armella, L., & Hegedus, S. (2013). From
Static to Dynamic Mathematics: Historical and Representational
Perspectives. In S. J. Hegedus & J. Roschelle (Eds.),
The SimCalc Vision and
Contributions (pp. 27–45). Springer Netherlands.
http://doi.org/10.1007/978-94-007-5696-0_3
Moritz, J. (2004). Reasoning about
covariation. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy,
reasoning and thinking (pp. 227–255). Springer. Retrieved
from http://bib.tiera.ru/dvd53/Ben-Zvi%20D.%20-%20The%20Challenge%20of%20Developing%20Statistical%20Literacy,%20Reasoning%20and%20Thinking(2004)(440).pdf#page=233
Morris, A. K., & Hiebert, J. (2011). Creating Shared
Instructional Products. Educational Researcher,
40(1), 5.
Morris, B. J., Croker, S., Zimmerman, C., & Amy M. Masnick. (2012).
The Emergence of Scientific Reasoning. In H.
Kloos, B. J. Morris, & J. L. Amaral (Eds.), Current Topics in Children’s Learning and
Cognition. http://doi.org/10.5772/53885
Mortensen, C. (2008). Change. In E. N. Zalta (Ed.),
The Stanford Encyclopedia of
Philosophy (Fall 2008). Retrieved from http://plato.stanford.edu/archives/fall2008/entries/change/
Mottier, V. (2005). The interpretive turn: history,
memory, and storage in qualitative research. Forum:
Qualitative Sozialforschung, 6(2). Retrieved from http://www.qualitative-research.net/index.php/fqs/article/view/456/973
Moxley, R. (1983). Educational diagrams.
Instructional Science, 12(2), 147–160.
http://doi.org/10.1007/BF00122454
Murphy, C. (2003). Literature review in primary
science and ICT. Retrieved from http://www2.futurelab.org.uk/resources/documents/lit_reviews/Primary_Science_Review.pdf
Narayanan, N., & Hegarty, M. (2000). Communicating Dynamic Behaviors: Are Interactive
Multimedia Presentations Better than Static Mixed-Mode
Presentations? In Theory and Application
of Diagrams (pp. 257–288). New York: Springer. Retrieved
from http://www.psych.ucsb.edu/~hegarty/papers/17-Communicating%20dynamic%20behaviors.pdf
Nardi, E. (2014). Reflections on Visualization in
Mathematics and in Mathematics Education. In M. N. Fried & T.
Dreyfus (Eds.), Mathematics & Mathematics
Education: Searching for Common Ground (pp. 193–220).
Springer Netherlands. http://doi.org/10.1007/978-94-007-7473-5_12
Nathan, M. J., & Wagner Alibali, M. (2010). Learning sciences. Wiley Interdisciplinary
Reviews: Cognitive Science, 1(3), 329–345.
Nemirovsky, R. (1993). Children, Additive
Change, and Calculus. TERC Communications, 2067
Massachusetts Ave., Cambridge, MA 02140. Retrieved from http://eric.ed.gov/PDFS/ED365536.pdf
Nemirovsky, R. (1994). On Ways of Symbolizing: The
Case of Laura and the Velocity Sign. Journal of Mathematical
Behaviour, 13, 389–422.
Nemirovsky, R., & Tierney, C. (2001). Children
creating ways to represent changing situations: On the development of
homogeneous spaces. Educational Studies in Mathematics,
45(1), 67–102.
Nemirovsky, R., Tierney, C., & Wright, T. (1998). Body motion and graphing. Cognition and
Instruction, 16(2), 119–172.
Newcombe, N. S., & Stieff, M. (2011). Six Myths About Spatial
Thinking. International Journal of Science Education,
(0), 1–17. http://doi.org/10.1080/09500693.2011.588728
Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school
science. International Journal of Science Education,
21(5), 553–576. http://doi.org/10.1080/095006999290570
Nixon, E. G. (2009). Creating and learning
abstract algebra: Historical phases and conceptual levels
(PhD thesis). Retrieved from http://uir.unisa.ac.za/handle/10500/1134
Noble, T., Nemirovsky, R., Dimattia, C., & Wright, T. (2004). Learning to see: Making sense of the mathematics of
change in middle school. International Journal of Computers
for Mathematical Learning, 9(2), 109–167.
Noble, T., Nemirovsky, R., Wright, T., & Tierney, C. (2001). Experiencing Change: The Mathematics of Change in
Multiple Environments. Journal for Research in Mathematics
Education, 32(1), pp. 85–108. Retrieved from http://www.jstor.org/stable/749622
Noss, R. (2012). 21st Century Learning for 21st
Century Skills: What Does It Mean, and How Do We Do It? In A.
Ravenscroft, S. Lindstaedt, C. Kloos, & D. Hernández-Leo (Eds.),
21st Century Learning for 21st Century
Skills (Vol. 7563, pp. 3–5). Springer Berlin Heidelberg.
http://doi.org/10.1007/978-3-642-33263-0_1
Noss, Richard, Healy, L., & Hoyles, C. (1997). The Construction of Mathematical Meanings: Connecting the
Visual with the Symbolic. Educational Studies in
Mathematics, 33(2), pp. 203–233. Retrieved from http://www.jstor.org/stable/3482643
Notari-Syverson, A., & Sadler, F. H. (2008). Math is for everyone: Strategies for supporting early
mathematical competencies in young children. Young
Exceptional Children, 11(3), 2.
Nowicki, BarbaraL., Sullivan-Watts, B., Shim, MinsukK., Young, B., &
Pockalny, R. (2013). Factors Influencing Science
Content Accuracy in Elementary Inquiry Science Lessons.
Research in Science Education, 43(3), 1135–1154.
http://doi.org/10.1007/s11165-012-9303-4
Nunes, T., Light, P., & Mason, J. (1993). Tools
for thought: the measurement of length and area. Learning and
Instruction, 3(1), 39–54. http://doi.org/10.1016/S0959-4752(09)80004-2
Nussbaum, M., Alvarez, C., McFarlane, A., Gomez, F., Claro, S., &
Radovic, D. (2009). Technology as small group
face-to-face Collaborative Scaffolding. Computers &
Education, 52(1), 147–153.
Orhun, E. (1995). Design of computer-based
cognitive tools. In A. A. diSessa, C. Hoyles, R. Noss, & L.
D. Edwards (Eds.), Computers and Exploratory
Learning (pp. 305–319). Springer.
Orilia, F. (2011). Dynamic events and
presentism. Philosophical Studies, 1–8. Retrieved from
http://docenti.unimc.it/docenti/francesco-orilia/preprint_events_and_presentism_april_1_2011_-_copia.pdf
Osborne, J., & Dillon, J. (2008). Science
education in Europe: Critical reflections. Retrieved from http://www.pollen-europa.net/pollen_dev/Images_Editor/Nuffield%20report.pdf
Osborne, J., Erduran, S., Simon, S., & Monk, M. (2001). Enhancing the quality of argument in school
science. School Science Review, 82(301), 63–70.
Retrieved from https://ase.org.uk/journals/school-science-review/2001/06/301/1318/SSR301Jun2001p63.pdf
Osborne, J., & Hennessy, S. (2003). Literature
review in science education and the role of ICT: Promise, problems and
future directions. Retrieved from http://www2.futurelab.org.uk/resources/documents/lit_reviews/Secondary_Science_Review.pdf
Özdemir, G., & Clark, D. B. (2007). An Overview
of Conceptual Change Theories. Eurasia Journal of
Mathematics, Science & Technology Education, 3(4),
351–361. Retrieved from http://www.ejmste.com/v3n4/EURASIA\_v3n4.pdf#page=106
Palincsar, A. S., & Herrenkohl, L. R. (2002). Designing collaborative learning contexts.
Theory into Practice, 41(1), 26–32.
Papadopoulos, I., & Dagdilelis, V. (2009). ICT
in the Classroom Microworld-Some Reservations. Best Practices
for the Knowledge Society. Knowledge, Learning, Development and
Technology for All, 137–145.
Papert, Seymour. (1991). Perestroika and
epistemological politics. In I. Harel & S. Papert (Eds.),
Constructionism (pp. 13–28).
Papert, S. (1991). Situating
constructionism. In I. Harel & S. Papert (Eds.),
Constructionism (pp. 1–11). Retrieved from http://www.papert.org/articles/SituatingConstructionism.html
Papert, S. (1993). Mindstorms: Children,
computers, and powerful ideas (2nd ed.). Basic Books.
Papert, Seymour. (1993). The children’s
machine. Technology Review, 96(5), 28–36.
Park, S. I., Lee, G., & Kim, M. (2009). Do
students benefit equally from interactive computer simulations
regardless of prior knowledge levels? Computers &Amp;
Education, 52(3), 649–655. http://doi.org/10.1016/j.compedu.2008.11.014
Parnafes, O. (2007). What Does" Fast" Mean?
Understanding the Physical World Through Computational
Representations. The Journal of the Learning Sciences,
76(3), 415–450. Retrieved from http://131.193.130.213/media//Parnafes_JLS2007.pdf
Parnafes, Orit, & Disessa, A. (2004). Relations
between Types of Reasoning and Computational Representations.
International Journal of Computers for Mathematical Learning,
9, 251–280. Retrieved from http://dx.doi.org/10.1007/s10758-004-3794-7
Pedró, F. (2006). The New Millennium Learners:
Challenging our Views on ICT and Learning (IDB Publications
No. 9228). Inter-American Development Bank. Retrieved from http://ideas.repec.org/p/idb/brikps/9228.html
Peirce, C. S. (1970). Collected Papers of Chales
Sanders Peirce. Retrieved from http://www.dca.fee.unicamp.br/~gudwin/ftp/ia005/Peirce%20Theory%20of%20Abduction.pdf
Pelgrum, W. J., & Plomp, T. (1993). The
worldwide use of computers: a description of main trends.
Computers & Education, 20(4), 323–332.
Penner, D. E. (2000). Cognition, computers, and
synthetic science: Building knowledge and meaning through
modeling. Review of Research in Education, 25,
1–35.
Perkins, D. (1999). The many faces.
Educational Leadership: Associations for Supervision and Curriculum
Development, Nov, 6–11. Retrieved from http://moodle.urbandale.k12.ia.us/file.php/2324/Construction_of_Learning_Resources/The_Many_Faces_of_Constructivism.pdf
Perkins, D. (2006). Constructivism and troublesome
knowledge. In J. H. F. Meyer & R. Land (Eds.), Overcoming barriers to student understanding: Threshold
concepts and troublesome knowledge (pp. 33–47). Routledge
London.
Perkins, D. N. (1993). Person-plus: A distributed
view of thinking and learning. In G. Salomon (Ed.), Distributed cognitions: Psychological and educational
considerations (pp. 88–110).
Phillips, D. C. (1995). The good, the bad, and the
ugly: The many faces of constructivism. Educational
Researcher, 5–12.
Phillips, Denis C., & Dolle, J. R. (2006). From
Plato to Brown and beyond: Theory, practice, and the promise of design
experiments. In L. Verschaffel, F. Dochy, M. Boekaerts, & S.
Vosniadou (Eds.), Instructional psychology:
Past, present and future trends. Sixteen essays in honour of Erik De
Corte (pp. 277–292). Elsevier. Retrieved from http://ir.nmu.org.ua/bitstream/handle/123456789/122437/bccd9b1e7ec0083c775a0f8eec5cdaab.pdf?sequence=1&isAllowed=y#page=310
Phillips, R. J. (1997). Can juniors read graphs? A
review and analysis of some computer-based activities.
Technology, Pedagogy and Education, 6(1), 49–58.
Piaget, J. (1970). The Child’s Conception of
Movement and Speed. New York: Ballantine Books.
Piaget, J. (2000). Commentary on Vygotsky’s
criticisms of Language and thought of the child and Judgement and
reasoning in the child. New Ideas in Psychology,
18(2–3), 241–259. http://doi.org/10.1016/S0732-118X(00)00012-X
Piaget, J., Grize, J., Szeminska, A., & Bang, V. (1977). Epistemology and psychology of functions
(Vol. 83). D. Reidel Publishing Company.
Pierce, R., & Stacey, K. (2010). Mapping
Pedagogical Opportunities Provided by Mathematics Analysis
Software. International Journal of Computers for Mathematical
Learning, 15(1), 1–20. http://doi.org/10.1007/s10758-010-9158-6
Pijls, M., & Dekker, R. (2011). Students
discussing their mathematical ideas: the role of the teacher.
Mathematics Education Research Journal, 23, 379–396.
http://doi.org/10.1007/s13394-011-0022-3
Pitta-Pantazi, D., Sophocleous, P., & Christou, C. (2013). Developing and Enhancing Elementary School
Students’ Higher Order Mathematical Thinking with
SimCalc. In S. J. Hegedus & J. Roschelle (Eds.), The SimCalc Vision and Contributions (pp.
319–340). Springer Netherlands. http://doi.org/10.1007/978-94-007-5696-0_18
Ploetzner, R., Lippitsch, S., Galmbacher, M., Heuer, D., & Scherrer,
S. (2009). Students’ difficulties in
learning from dynamic visualisations and how they may be
overcome. Computers in Human Behavior, 25(1),
56–65. http://doi.org/10.1016/j.chb.2008.06.006
Plomp, T. (2013). Educational Design Research: An
introduction. In T. Plomp & N. Nieveen (Eds.),
Educational Design Research (Vol. A, pp. 11–50).
SLO. Retrieved from http://international.slo.nl/edr/
Plomp, T., & Pelgrum, W. J. (1991). Introduction of computers in education: State of the art
in eight countries. Computers & Education,
17(3), 249–258.
Pluspunt groep 6 en groep 7.
(n.d.). Malmberg.
Ponterotto, J. G. (2006). Brief note on the
origins, evolution, and meaning of the qualitative research concept
“thick description.” The Qualitative
Report, 11(3), 538–549. Retrieved from http://www.nova.edu/ssss/QR/QR11-3/ponterotto.pdf
Prain, V., & Tytler, R. (2012). Learning
Through Constructing Representations in Science: A framework of
representational construction affordances. International
Journal of Science Education, 34(17), 2751–2773.
http://doi.org/10.1080/09500693.2011.626462
Pratt, D. (1995). Young children’s active and
passive graphing. Journal of Computer Assisted Learning,
11(3), 157–169. http://doi.org/10.1111/j.1365-2729.1995.tb00130.x
Preece, J. (1983). Graphs are not
straightforward. In T. R. G. Green, S. J. Payne, & G. C. van
der Veer (Eds.), The psychology of computer
use (pp. 41–56). Academic press.
Prensky, M. (2001). Digital natives, digital
immigrants Part 1. On the Horizon, 9(5), 1–6.
Retrieved from http://www.marcprensky.com/writing/prensky%20-%20digital%20natives,%20digital%20immigrants%20-%20part1.pdf
Presmeg, NC. (2006). Research on visualization in
learning and teaching mathematics. Handbook of Research on
the Psychology of Mathematics Education: Past, Present and Future,
205–235. Retrieved from http://www.kaputcenter.umassd.edu/downloads/symcog/bib/pmeVisualizationFinalAPA.pdf
Presmeg, N. (2008). Spatial abilities research as a
foundation for visualization in teaching and learning
mathematics. Critical Issues in Mathematics Education,
83–95.
Putnam, H. (1991). Representation and
reality. The MIT Press.
Quintana, C., Reiser, B. J., Davis, E., Krajcik, J., Fretz, E., Duncan,
R. G., … Soloway, E. (2004). A Scaffolding Design
Framework for Software to Support Science Inquiry. Journal of
the Learning Sciences, 13(3), 337–386. http://doi.org/10.1207/s15327809jls1303_4
Radford, L., Bardini, C., Sabena, C., Diallo, P., & Simbagoye, A.
(2005). On embodiment, artifacts, and signs: A
semiotic-cultural perspective on mathematical thinking. In H. L.
Chick & J. L. Vincent (Eds.), Proceedings
of the 29th Conference of the International Group for the Psychology of
Mathematics Education (pp. 113–120).
Rasmussen, C., & Marrongelle, K. (2006). Pedagogical Content Tools: Integrating Student Reasoning
and Mathematics in Instruction. Journal for Research in
Mathematics Education, 37(5), 388–420. Retrieved from http://www.jstor.org/stable/30034860
Ray, T. S. (1994). An evolutionary approach to
synthetic biology. Artificial Life, 1(1/2),
179–209.
Reeves, T. C. (2011). Can Educational Research Be
Both Rigorous and Relevant? Educational Designer,
1(4). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue4/article13
Reeves, T. C., McKenney, S., & Herrington, J. (2010). Publishing and perishing: The critical importance of
educational design research. In Proceedings ascilite Sydney 2010 (pp.
787–794).
Reimann, P. (2009). Time is precious: Variable-and
event-centred approaches to process analysis in CSCL research.
International Journal of Computer-Supported Collaborative
Learning, 4(3), 239–257.
Reimann, Peter. (2011). Design-Based Research. In L.
Markauskaite, P. Freebody, & J. Irwin (Eds.), Methodological Choice and Design (Vol. 9, pp.
37–50). Springer Netherlands.
Reiser, B. J. (2004). Scaffolding complex learning:
The mechanisms of structuring and problematizing student work.
The Journal of the Learning Sciences, 13(3), 273–304.
Repenning, A., Ioannidou, A., & Phillips, J. (1999). Collaborative use & design of interactive
simulations. In Proceedings of the 1999
conference on Computer support for collaborative learning.
Palo Alto, California: International Society of the Learning Sciences.
Retrieved from http://dl.acm.org/citation.cfm?id=1150240.1150299
Resnick, M. (1991). Xylophones, hamsters, and
fireworks: the role of diversity in constructionist activities.
In I. Harel & S. Papert (Eds.),
Constructionism (pp. 151–158).
Resnick, M., & Ocko, S. (1991). LEGO/Logo. In I. Harel
& S. Papert (Eds.), Constructionism (pp.
141–150).
Ritchie, S. M. (2001). Actions and discourses for
transformative understanding in a middle school science class.
International Journal of Science Education, 23(3),
283–299. http://doi.org/10.1080/095006901750066529
Roberts, R. M. (1989). Serendipity: accidental
discoveries in science. John Wiley & Sons, Inc.
Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H.,
& Valerie-Hemmo. (2007). Science education
now: A renewed pedagogy for the future of Europe. Brussels:
European Commission. Retrieved from http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
Rogers, Y., Scaife, M., Aldrich, F., & Price, S. (2003). Improving Children’s Understanding of Formalisms Through
Interacting with Multimedia. In COGNITIVE SCIENCE
RESEARCH PAPER-UNIVERSITY OF SUSSEX CSRP.
Rojas-Drummond, S., & Mercer, N. (2003). Scaffolding the development of effective collaboration
and learning. International Journal of Educational
Research, 39(1–2), 99–111.
http://doi.org/10.1016/S0883-0355(03)00075-2
Roorda, G. (2012). Ontwikkeling in
verandering: Ontwikkeling van wiskundige bekwaamheid van
leerlingen met betrekking tot het concept afgeleide (PhD thesis).
Rijksuniversiteit Groningen. Retrieved from http://www.rug.nl/staff/g.roorda/proefschriftGerritRoorda.pdf
Roschelle, J., Kaput, J., & Stroup, W. (2000). SIMCALC: Accelerating Students’ Engagement With the
Mathematics of Change. Innovations in Science and Mathematics
Education: Advanced Designs for Technologies of Learning, 47–75.
Retrieved from http://ctl.sri.com/publications/downloads/SimCalc_accel_preprint.pdf
Rosé, C., Wang, Y. C., Cui, Y., Arguello, J., Stegmann, K., Weinberger,
A., & Fischer, F. (2008). Analyzing
collaborative learning processes automatically: Exploiting the advances
of computational linguistics in computer-supported collaborative
learning. International Journal of Computer-Supported
Collaborative Learning, 3(3), 237–271.
Ross, S. M., Morrison, G. R., Hannafin, R. D., Young, M., Akker, J. van
den, Kuiper, W., … Klein, J. D. (2007). Research
designs. In J. M. Spector, M. D. Merrill, J. V. Merrienboer,
& M. P. Driscoll (Eds.), Handbook of
Research for Educational Communications and Technology (7th
ed., pp. 715–761).
Roth, M., & Eijck, M. V. (2010). Fullness of
life as minimal unit: Science, technology, engineering, and mathematics
(STEM) learning across the life span. Science Education.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/sce.20401/full
Roth, W. (2002). Reading graphs: Contributions to
an integrative concept of literacy. Journal of Curriculum
Studies, 34(1), 1–24.
Roth, W., Bowen, G. M., & Masciotra, D. (2002). From thing to sign and “natural object”:
Toward a genetic phenomenology of graph interpretation.
Science, Technology & Human Values, 27(3), 327.
Roth, W., Bowen, G. M., & McGinn, M. K. (1999). Differences in Graph-Related Practices between High
School Biology Textbooks and Scientific Ecology Journals.
Journal of Research in Science Teaching, 36(9),
977–1019.
Roth, W., & Lee, Y. J. (2004). Interpreting
unfamiliar graphs: A generative, activity theoretic model.
Educational Studies in Mathematics, 57(2), 265–290.
Roth, W., & McGinn, M. K. (1997). Graphing:
Cognitive ability or practice? Science Education,
81(1), 91–106.
Rotherham, A., & Willingham, D. (2010). “21st-Century” Skills: Not New, but a Worthy
Challenge. American Educator, 34(1), 17–20.
Ruddock, G., & Sainsbury, M. (2008). Comparison of the core primary curriculum in England to
those of other high performing countries. National
Foundation for Educational Research; Department for Children, Schools;
Families. Retrieved from http://files.eric.ed.gov/fulltext/ED502359.pdf
Ryan, J., & Williams, J. (2007). Children’s
Mathematics 4-15: Learning From Errors And Misconceptions: Learning from
Errors and Misconceptions. McGraw-Hill International.
Saab, N., Joolingen, W. R. van, & Hout-Wolters, B. H. A. M. van.
(2007). Supporting communication in a collaborative
discovery learning environment: The effect of instruction.
Instructional Science, 35(1), 73–98.
Sabelli, N. H. (2006). Complexity, technology,
science, and education. Journal of the Learning
Sciences, 15(1), 5.
Saldanha, L., & Thompson, P. (1998). Re-thinking co-variation from a quantitative perspective:
Simultaneous continuous variation. In S. B. Berensen, K. R.
Dawkins, M. Blanton, W. N. Coulombe, J. Kolb, K. Norwood, & L. Stiff
(Eds.), Proceedings of the Annual Meeting of
the Psychology of Mathematics Education North America. Raleigh,
NC (pp. 298–303). Columbus: ERIC Clearinghouse for Science,
Mathematics,; Environmental Education. Retrieved from http://pat-thompson.net/PDFversions/1998SimulConVar.pdf
Savelsbergh, E., Drijvers, P., Giessen, C. van de, Heck, A., Hooyman,
K., Kruger, J., … Westra, R. (2008). Modelleren
en computermodellen in de ß-vakken. Advies
aan de gezamenlijke ß-vernieuwingscommissie.
afstemmingsgroep modelleren. Retrieved from http://www.nieuwenatuurkunde.nl/download/id/40/Modelleren_betavakken.pdf
Sawyer, R. K. (2011). A call to action: The
challenges of creative teaching and learning. Teachers
College Record, 7. Retrieved from http://www.artsci.wustl.edu/~ksawyer/PDFs/TCR.pdf
Scaife, J. (1993). Datalogging: where are we
now? Physics Education, 28, 83. Retrieved from
http://iopscience.iop.org/0031-9120/28/2/003/pdf/0031-9120_28_2_003.pdf
Scaife, M., & Rogers, Y. (1996). External
cognition: how do graphical representations work? Int. J.
Human–Computer Studies, 45, 185–213.
Schefe, P. (1993). Computationalism
reconsidered connectionism and the use of computer science concepts in
explanations of the mind. Retrieved from http://epub.sub.uni-hamburg.de/informatik/volltexte/2010/138/pdf/B_166_93.pdf
Schemmel, M. (2010). Medieval representations
of change and their early Modern application. Retrieved from
http://wwwneu.mpiwg-berlin.mpg.de/Preprints/P402.PDF
Schliemann, A., Carraher, D., Brizuela, B., Earnest, D., Goodrow, A.,
Lara-Roth, S., & Peled, I. (2003). Algebra in
Elementary School. International Group for the Psychology of
Mathematics Education, 8. Retrieved from http://www.earlyalgebra.terc.edu/our_papers/2003/schlieman_etall_pme2003.pdf
Schnotz, W. (2002). Enabling, facilitating, and
inhibiting effects in learning from animated pictures. In
International Workshop on Dynamic
Visualizations and Learning, Tubingen, Germany.
Schnotz, Wolfgang, & Bannert, M. (2003). Construction and interference in learning from multiple
representation. Learning and Instruction,
13(2), 141–156.
Schnotz, Wolfgang, & Rasch, T. (2005). Enabling, facilitating, and inhibiting effects of
animations in multimedia learning: Why reduction of cognitive load can
have negative results on learning. Educational Technology
Research and Development, 53, 47–58. http://doi.org/10.1007/BF02504797
Schoenfeld, A. (2009). Bridging the cultures of
educational research and design. Educational Designer,
1(2). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue2/article5
Schoor, C., & Bannert, M. (2012). Exploring
regulatory processes during a computer-supported collaborative learning
task using process mining. Computers in Human Behavior.
Schubring, G. (2005). Conflicts between
generalization, rigor, and intuition. Springer. Retrieved
from http://users.uoa.gr/~spapast/TomeasDidaktikhs/Caychy/ConflictsBetweenGeneralizationRigorandIntuitionNumberConceptsUnderlyingtheDevelopmentofAnalysisin17th19thCenturySourcesandStudi.pdf
Schubring, G. (2007). Der Aufbruch zum
funktionalen Denken“: Geschichte des Mathematikunterrichts
im Kaiserreich. NTM International Journal of History and
Ethics of Natural Sciences, Technology and Medicine,
15(1), 1–17. http://doi.org/10.1007/s00048-006-0260-8
Schunn, C. (2008). Engineering Educational Design.
Educational Designer, 1(1). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue1/article2
Schwarz, B. B., & Hershkowitz, R. (1999). Prototypes: Brakes or levers in learning the function
concept? The role of computer tools. Journal for Research in
Mathematics Education, 30(4), 362–389.
Schwarz, C. (2009). Developing preservice
elementary teachers’ knowledge and practices through modeling-centered
scientific inquiry. Science Education, 93(4),
720–744.
Schwarz, Christina V., Reiser, B. J., Davis, E., Kenyon, L., Achér, A.,
Fortus, D., … Krajcik, J. (2009). Developing a
learning progression for scientific modeling: Making scientific modeling
accessible and meaningful for learners. Journal of Research
in Science Teaching, 46(6), 632–654. http://doi.org/10.1002/tea.20311
Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students’
understanding of scientific modeling. Cognition and
Instruction, 23(2), 165–205. Retrieved from http://www.cuip.net/~cac/nlu/tie512win10/articles/Metamodeling%20Knowledge.pdf
ScienceGuide. (2008). Techniek in PO: veel werk aan
de winkel. ScienceGuide. Retrieved from http://www.scienceguide.nl/200809/techniek-in-po-veel-werk-aan-de-winkel.aspx
Segall, R. G. (1991). A multimedia research tool
for ethnographic investigations. In I. Harel & S. Papert
(Eds.), Constructionism (pp. 467–497).
Selwyn, N. (2003). Why students do (and do not)
make use of ICT in university. Retrieved from http://www.leeds.ac.uk/educol/documents/00003130.htm
Selwyn, N. (2009). The digital native–myth and
reality, 61(4), 364–379. Retrieved from https://comminfo.rutgers.edu/~tefko/Courses/Zadar/Readings/Selwyn%20dig%20natives,%20Aslib%20Proceedings%202009.pdf
Sengupta, Pratim, & Farris, A. V. (2012). Learning kinematics in elementary grades using
agent-based computational modeling: a visual programming-based
approach. In Proceedings of the 11th
International Conference on Interaction Design and Children
(pp. 78–87). New York, NY, USA: ACM. http://doi.org/10.1145/2307096.2307106
Sengupta, P., Farris, A. V., & Wright, M. (2012). From Agents to Continuous Change via Aesthetics: Learning
Mechanics with Visual Agent-based Computational Modeling.
Technology, Knowledge and Learning, 1–20.
Seufert, T., & Brünken, R. (2004). Supporting
coherence formation in multimedia learning. In Instructional design for effective and enjoyable
computer-supported learning. Proceedings of the first joint meeting of
the EARLI SIGs Instructional Design and Learning and Instruction with
Computers (pp. 138–147).
Sfard, A. (1991). On the dual nature of
mathematical conceptions: Reflections on processes and objects as
different sides of the same coin. Educational Studies in
Mathematics, 22(1), 1–36.
Sfard, Anna. (1994). Reification as the birth of
metaphor. For the Learning of Mathematics,
14(1), 44–55.
Sfard, Anna, & Leron, U. (1996). Just give me a
computer and i will move the earth: Programming as a catalyst of a
cultural revolution in the mathematics classroom.
International Journal of Computers for Mathematical Learning,
1, 189–195. Retrieved from http://dx.doi.org/10.1007/BF00571078
Sfard, A., & Thompson, P. (1994). Problems of
reification: Representations and mathematical objects. In
Proceedings of the sixteenth annual meeting of
the North American chapter of the international group for the psychology
of mathematics education (Vol. 1, pp. 3–34).
Shaffer, D. W., & Kaput, J. (1998). Mathematics
and virtual culture: An evolutionary perspective on technology and
mathematics education. Educational Studies in
Mathematics, 37(2), 97–119.
Shah, P., & Hoeffner, J. (2002). Review of
Graph Comprehension Research: Implications for Instruction.
Educational Psychology Review, 14(1), 47–69.
http://doi.org/10.1023/A:1013180410169
Shavelson, R. J., Phillips, D., Towne, L., & Feuer, M. J. (2003).
On the science of education design studies.
Educational Researcher, 32(1), 25–28. Retrieved from
http://www.stanford.edu/dept/SUSE/SEAL/Reports_Papers/methods_papers/On%20the%20Science%20of%20Ed%20Design%20Studies_ER.pdf
Shavelson, Richard J., & Towne, L. (Eds.). (2002). Scientific research in education. Washington:
National Academy Press.
Sherin, B. L. (2000). How students invent
representations of motion. A genetic account. Journal of
Mathematical Behavior, 19, 399–441.
Shulman, L. S. (1986). Those who understand:
Knowledge growth in teaching. Educational Researcher,
15(2), 4–14.
Simon, M. A. (1995). Reconstructing Mathematics
Pedagogy from a Constructivist Perspective. Journal for
Research in Mathematics Education, 26(2), 114–145.
Retrieved from http://www.jstor.org/stable/749205
Simon, M. A. (2006). Key Developmental
Understandings in Mathematics: A Direction for Investigating and
Establishing Learning Goals. Mathematical Thinking and
Learning, 8(4), 359–371. http://doi.org/10.1207/s15327833mtl0804_1
Simon, M. A., & Tzur, R. (2004). Explicating
the Role of Mathematical Tasks in Conceptual Learning: An Elaboration of
the Hypothetical Learning Trajectory. Mathematical Thinking
and Learning, 6(2), 91–104. http://doi.org/10.1207/s15327833mtl0602_2
Slavin, R. E., Hurley, E. A., & Chamberlain, A. (2003). Cooperative Learning and Achievement: Theory and
Research. In W. M. Reynolds & G. E. Miller (Eds.), Handbook of Psychology. Educational
Psychology (Vol. 7, pp. 177–198). John Wiley & Sons,
Inc. http://doi.org/10.1002/0471264385.wei0709
SLO. (2006). Herziene kerndoelen
basisonderwijs. Retrieved from http://www.slo.nl/primair/kerndoelen/Kerndoelen.doc/download
SLO. (2009). TULE inhouden en activiteiten.
Retrieved from http://tule.slo.nl
Smaling, A. (1990). Enige aspecten van kwalitatief
onderzoek en het klinisch interview (Some aspects of qualitative
research and the clinical interview). Tijdschrift Voor
Nascholing En Onderzoek van Het Reken-Wiskundeonderwijs,
3(8), 4–10.
Smaling, A. (1992). Varieties of methodological
intersubjectivity — the relations with qualitative and quantitative
research, and with objectivity. Quality and Quantity,
26(2), 169–180. http://doi.org/10.1007/BF02273552
Smaling, A. (2003). Inductive, analogical, and
communicative generalization. International Journal of
Qualitative Methods, 2(1), 52–67. Retrieved from http://www.ualberta.ca/~iiqm/backissues/2\_1/pdf/smaling.pdf
Smit, J., AA van Eerde, H., & Bakker, A. (2012). A conceptualisation of whole-class scaffolding.
British Educational Research Journal. http://doi.org/10.1002/berj.3007
Smith, J., & Thompson, P. (2007). Quantitative
reasoning and the development of algebraic reasoning. In J.
Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 95–132).
Erlbaum. Retrieved from http://www.pat-thompson.net/PDFversions/2006SmithThompsonEarlyAlg.pdf
Smith, T. M. (1961). Some uses of graphing before
Descartes. The Mathematics Teacher, 54(7), pp.
565–567. Retrieved from http://www.jstor.org/stable/27956478
Soloway, E. (1993). Should we teach students to
program? Communications of the ACM, 36(10),
21–24.
Songer, N. B., & Gotwals, A. W. (2012). Guiding
explanation construction by children at the entry points of learning
progressions. Journal of Research in Science Teaching,
49, 141–165.
Speiser, Bob, & Walter, C. (1994). Catwalk:
First-semester calculus. The Journal of Mathematical
Behavior, 13(2), 135–152. http://doi.org/10.1016/0732-3123(94)90018-3
Speiser, Bob, & Walter, C. (1996). Second
catwalk: Narrative, context, and embodiment. The Journal of
Mathematical Behavior, 15(4), 351–371. http://doi.org/10.1016/S0732-3123(96)90021-8
Speiser, Bob, & Walter, C. (1997). Performing
algebra: Emergent discourse in a fifth-grade classroom. The
Journal of Mathematical Behavior, 16(1), 39–49.
http://doi.org/10.1016/S0732-3123(97)90006-7
Speiser, B., Walter, C., & Maher, C. A. (2003). Representing motion: An experiment in learning.
Journal of Mathematical Behavior, 22(1), 1–35.
Sriraman, Bharath, & English, L. (2005). Theories of Mathematics Education: A global survey of
theoretical frameworks/trends in mathematics education research.
ZDM, 37, 450–456. Retrieved from http://dx.doi.org/10.1007/BF02655853
Sriraman, B., & English, L. (2010). Surveying
theories and philosophies of mathematics education. Advances
in Mathematics Education, 7–32.
Stake, R. E. (1978). The case study method in
social inquiry. Educational Researcher, 7(2),
5–8. Retrieved from http://education.illinois.edu/CIRCE/Publications/1978\_Stake.pdf
Steffe, L. (1991a). Operations that generate
quantity. Learning and Individual Differences,
3(1), 61–82. http://doi.org/10.1016/1041-6080(91)90004-K
Steffe, L. (1991b). The Constructivist Teaching
Experiment: Illustrations and Implications. In A. Bishop & E.
Glasersfeld (Eds.), Radical Constructivism in
Mathematics Education (Vol. 7, pp. 177–194). Springer
Netherlands. Retrieved from http://dx.doi.org/10.1007/0-306-47201-5_9
Steffe, L., & Thompson, P. (2000a). Interaction
or Intersubjectivity? A Reply to Lerman. Journal for Research
in Mathematics Education, 31(2), pp. 191–209. Retrieved
from http://www.jstor.org/stable/749751
Steffe, L., & Thompson, P. (2000b). Teaching
experiment methodology: Underlying principles and essential
elements. In R. Lesh & A. Kelly (Eds.), Research desing in mathematics and science
education (pp. 267–306). Retrieved from http://www.coe.tamu.edu/~rcapraro/Articles/Teaching%20Experiments/TchExp%20Methodology%20Underlying%20Principles%20and%20Essential%20Elements.pdf
Stegmann, K., Wecker, C., Weinberger, A., & Fischer, F. (2012).
Collaborative argumentation and cognitive
elaboration in a computer-supported collaborative learning
environment. Instructional Science, 40(2),
297–323.
Stein, M. K., Baxter, J. A., & Leinhardt, G. (1990). Subject-matter knowledge and elementary instruction: A
case from functions and graphing. American Educational
Research Journal, 27(4), 639. Retrieved from https://www.msu.edu/user/mkennedy/TQQT/PDFs/SteinBL90.pdf
Stephan, Michelle. (2003). Chapter 2:
Reconceptualizing Linear Measurement Studies: The Development of Three
Monograph Themes. In Supporting
Students’ Development of Measuring Conceptions: Analyzing Students’
Learning in Social Context (Vol. 12, pp. pp. 17–35).
Retrieved from http://www.jstor.org/stable/30037719
Stephan, Michelle, & Akyuz, D. (2012). A
Proposed Instructional Theory for Integer Addition and
Subtraction. Journal for Research in Mathematics
Education, 43(4), 428–464.
Stephan, M., & Cobb, P. (2003). Chapter 3: The
Methodological Approach to Classroom-Based Research. In Journal for Research in Mathematics Education.
Monograph (Vol. 12, pp. pp. 36–50). National Council of
Teachers of Mathematics. Retrieved from http://www.jstor.org/stable/30037720
Stephan, Michelle, Underwood-Gregg, D., & Yackel, E. (2014). Guided Reinvention: What Is It and How Do Teachers Learn
This Teaching Approach? In Y. Li, E. A. Silver, & S. Li
(Eds.), Transforming Mathematics Instruction:
Multiple Approaches and Practices. Springer.
http://doi.org/10.1007/978-3-319-04993-9_4
Stephens, A. C. (2005). Developing Students’
Understandings of Variable. Mathematics Teaching in the
Middle School, 11(2), 96. Retrieved from http://labweb.education.wisc.edu/knuth/taar/papers_rep_pub/MTMS_variable.pdf
Stigler, J., & Thompson, B. (2009). Thoughts on
Creating, Accumulating, and Utilizing Shareable Knowledge to Improve
Teaching. Elementary School Journal, 109(5),
16.
Stratford, S. J. (1997). A review of computer-based
model research in precollege science classrooms. Journal of
Computers in Mathematics and Science Teaching, 16(1),
3–23.
Streefland, L. (1981). Zoals eenvoudig valt in te
zien. Nieuwe Wiskrant, 1, 3–7. Retrieved from
http://www.fi.uu.nl/wiskrant/artikelen/artikelen00-10/000/000_streefland.pdf
Streefland, L. (1985). Wiskunde als activiteit en
de realiteit als bron. Nieuwe Wiskrant, 5(1),
60–67.
Strijbos, J. W., Martens, R. L., & Jochems, W. M. G. (2004). Designing for interaction: Six steps to designing
computer-supported group-based learning. Computers &
Education, 42(4), 403–424.
Strijbos, J. W., & Weinberger, A. (2010). Emerging and scripted roles in computer-supported
collaborative learning. Computers in Human Behavior,
26(4), 491–494.
Stroup, W. (2002). Understanding qualitative
calculus: A structural synthesis of learning research.
International Journal of Computers for Mathematical Learning,
7(2), 167–215. Retrieved from http://www.springerlink.com/content/k211l7w34v628740/fulltext.pdf
Stroup, W. (2005). Learning the basics with
calculus. Journal of Computers in Mathematics and Science
Teaching, 24(2), 179–196. Retrieved from https://uteach.utexas.edu/sites/default/files/Basics%20with%20Calculus.pdf
Stump, S. L. (2001). High School Precalculus
Students’ Understanding of Slope as Measure. School Science
and Mathematics, 101(2), 81–89. http://doi.org/10.1111/j.1949-8594.2001.tb18009.x
Stylianou, DespinaA. (2011). An examination of
middle school students’ representation practices in
mathematical problem solving through the lens of expert work: towards an
organizing scheme. Educational Studies in Mathematics,
76(3), 265–280. http://doi.org/10.1007/s10649-010-9273-2
Suppes, P. (1966). The Uses of Computers in
Education. Scientific American, 215(3),
206–220. Retrieved from http://suppes-corpus.stanford.edu/articles/comped/67.pdf
Swan, M. (Ed.). (1985). The Language of
Functions and Graphs: An examination module for secondary
schools. Shell Centre for Mathematical Education. Retrieved from http://www.mathshell.com/publications/tss/lfg/lfg_teacher.pdf
Sweller, J., Merrienboer, JeroenJ. G. van, & Paas, FredG. W. C.
(1998). Cognitive Architecture and Instructional
Design. Educational Psychology Review, 10(3),
251–296. http://doi.org/10.1023/A:1022193728205
Tall, D. (in press). The evolution of technology
and the mathematics of change and variation. In S. Hegedus &
J. Roschelle (Eds.),.
Tall, D. (1981). Comments on the difficulty and
validity of various approaches to the calculus. For the
Learning of Mathematics, 16–21.
Tall, D. (1982). Elementary axioms and pictures for
infinitesimal calculus. Bulletin of the IMA,
18, 43–48.
Tall, D. (1986). Building and testing a
cognitive approach to the calculus using interactive computer
graphics (PhD thesis). University of Warwick.
Tall, D. (1991). The Psychology of Advanced
Mathematical Thinking. In D. Tall (Ed.), Advanced
Mathematical Thinking (Vol. 11, pp. 3–21). Springer
Netherlands. http://doi.org/10.1007/0-306-47203-1_1
Tall, D. (1993a). Interrelationships Between Mind
and Computer: Processes, Images, Symbols. In D. Ferguson (Ed.),
Advanced Educational Technologies for
Mathematics and Science (Vol. 107, pp. 385–413). Springer
Berlin Heidelberg. http://doi.org/10.1007/978-3-662-02938-1_14
Tall, D. (1993b). Students’
difficulties in calculus. In Proceedings
of Working Group 3 on Students’ Difficulties in Calculus,
ICME-7 1992, Québec, Canada (pp.
13–28). Retrieved from http://www.warwick.ac.uk/staff/David.Tall/pdfs/dot1993k-calculus-wg3-icme.pdf
Tall, D. (1997). Functions and calculus. In
A. J. Bishop, M. A. (Ken). Clements, C. Keitel, J. Kilpatrick, & C.
Laborde (Eds.), International handbook of
mathematics education (pp. 289–325). Kluwer, Dordrecht.
Retrieved from http://www.warwick.ac.uk/staff/David.Tall/pdfs/dot1997a-functions-calculus.pdf
Tall, D. (2000). Technology and versatile thinking
in mathematics. In Proceedings of TIME
2000 an International Conference on Technology in Mathematics
Education (pp. 33–50). Retrieved from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2000g-time2000.pdf
Tall, D. (2009). Dynamic mathematics and the
blending of knowledge structures in the calculus. ZDM,
41(4), 481–492. http://doi.org/10.1007/s11858-009-0192-6
Tall, D. (2010). A Sensible approach to the
Calculus. Retrieved from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2012x-sensible-calculus-for-publication.pdf
Tall, D. (2013). The Evolution of Technology and
the Mathematics of Change and Variation: Using Human Perceptions and
Emotions to Make Sense of Powerful Ideas. In S. Hegedus & J.
Roschelle (Eds.), The SimCalc Vision and
Contributions (pp. 449–461). Springer Netherlands.
http://doi.org/10.1007/978-94-007-5696-0_25
Tall, D., Gray, E., Ali, M., Crowley, L., DeMarois, P., McGowen, M., …
Yusof, Y. (2001). Symbols and the bifurcation
between procedural and conceptual thinking. Canadian Journal
of Science, Mathematics and Technology Education, 1(1),
81–104. http://doi.org/10.1080/14926150109556452
Tall, D., Smith, D., & Piez, C. (2008). Technology and calculus. In M. Heid & G. Blume
(Eds.), Research on Technology and the Teaching
and Learning of Mathematics (Vol. 1, pp. 207–258). Retrieved
from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2008f-piez-smith-tall-calculus.pdf
Tall, D., Thomas, M., Davis, G., Gray, E., & Simpson, A. (1999).
What Is the Object of the Encapsulation of a
Process? The Journal of Mathematical Behavior,
18(2), 223–241. http://doi.org/10.1016/S0732-3123(99)00029-2
Tall, D., & Vinner, S. (1981). Concept image
and concept definition in mathematics with particular reference to
limits and continuity. Educational Studies in
Mathematics, 12(2), 151–169. http://doi.org/10.1007/BF00305619
Taşar, M. F. (n.d.). What part of the concept of
acceleration is difficult to understand: the mathematics, the physics,
or both? ZDM, 1–14.
Taylor-Cox, J. (2003). Algebra in the Early
Years? Young Children, 58, 14–21. Retrieved
from http://earlychildhoodconnections.com/documents/Algebra.pdf
Teasley, S. D. (1995). The role of talk in
children’s peer collaborations. Developmental
Psychology, 31(2), 207.
Terwel, J., Oers, B. van, Dijk, I. van, & Eeden, P. van den. (2009).
Are representations to be provided or generated in
primary mathematics education? Effects on transfer.
Educational Research and Evaluation, 15(1), 25–44.
http://doi.org/10.1080/13803610802481265
Teuscher, D., & Reys, R. E. (2010). Slope, Rate
of Change, and Steepness: Do Students Understand These Concepts?.
Mathematics Teacher, 103(7), 6. Retrieved from http://mail.ottawacatholicschools.ca/~Mark.Couturier@ottawacatholicschools.ca/FOV1-000670D7/Slope%20and%20rate%20of%20change.pdf?FCItemID=S0A0CB01E
The Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for
educational inquiry. Educational Researcher,
32(1), 5–8.
Thomas, M. O., & Hong, Y. Y. (2001). Representations as conceptual tool: Process and
structural perspectives. In PME CONFERENCE
(Vol. 4, pp. 4–257).
Thompson, P. (1991). Getting ahead: with theories.
I have a theory about this. In Proceedings of the Annual Meeting of the North American
Chapter, International Group for the Psychology of Mathematics
Education: Plenary papers (pp. 240–245).
Thompson, P. (1993). Quantitative reasoning,
complexity, and additive structures. Educational Studies in
Mathematics, 25(3), 165–208.
Thompson, P. (1994a). Images of rate and
operational understanding of the fundamental theorem of calculus.
Educational Studies in Mathematics, 26(2), 229–274.
Thompson, P. (1994b). Students, functions, and the
undergraduate curriculum. In Research in collegiate
mathematics education, I: Issues in Mathematics Education (Vol. 4,
pp. 21–44). Providence: American Mathematical Society. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.3807&rep=rep1&type=pdf
Thompson, P. (1994c). The development of the
concept of speed and its relationship to concepts of rate. In G.
Harel & J. Confrey (Eds.), The development
of multiplicative reasoning in the learning of mathematics
(pp. 179–234). Albany: SUNY Press. Retrieved from http://pat-thompson.net/PDFversions/1994ConceptSpeedRate.pdf
Thompson, P. (2002). Didactic objects and didactic
models in radical constructivism. In K. Gravemeijer, R. Lehrer,
H. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling, and tool use in mathematics
education (Vol. 30, pp. 197–220). Retrieved from http://pat-thompson.net/PDFversions/2002DidacticObjs.pdfke
Thompson, P. (2008a). Conceptual analysis of
mathematical ideas: Some spadework at the foundation of mathematics
education. In Proceedings of the annual
meeting of the International Group for the Psychology of Mathematics
Education (Vol. 1, pp. 45–64). Retrieved from http://patthompson.net/PDFversions/2008ConceptualAnalysis.pdf
Thompson, P. (2008b). Epistemology, ontology, and
method: comments on Tiberghien’s and Dreyfus’ paper.
Thompson, P. (2011). Quantitative reasoning and
mathematical modeling. In L. L. Hatfield, S. Chamberlain, &
S. Belbase (Eds.), New perspectives and
directions for collaborative research in mathematics
education (pp. 33–57).
Thompson, P. (2012). Advances in research on
quantitative reasoning. In R. Mayes, R. Bonillia, L. L. Hatfield,
& S. Belbase (Eds.), Quantitative reasoning
and Mathematical Modeling: A Driver for STEM Integrated Education and
Teaching in Context (pp. 143–148). Retrieved from http://www.uwyo.edu/wisdome/_files/documents/thompson.pdf
Thompson, P. (2013). In the absence of
meaning…. In Vital
directions for mathematics education research (pp. 57–93).
Retrieved from http://pat-thompson.net/PDFversions/2013AbsenceMeaning.pdf
Thompson, P., Byerley, C., & Hatfield, N. (2013). A Conceptual Approach to Calculus Made Possible by
Technology. Computers in the Schools, 30(1-2),
124–147. http://doi.org/10.1080/07380569.2013.768941
Thompson, P., & Thompson, A. (1994). Talking
about rates conceptually, part I: a teacher’s struggle.
Journal for Research in Mathematics Education, 25(3),
279–303.
Thompson, P., & Thompson, A. (1996). Talking
about rates conceptually, part II: mathematical knowledge for
teaching. Journal for Research in Mathematics Education,
27(1), 2–24.
Tilling, L. (1975). Early Experimental Graphs. The
British Journal for the History of Science, 8(3), pp.
193–213. Retrieved from http://www.jstor.org/stable/4025556
Tinker, R. (1999). New technology bumps into an old
curriculum. Retrieved from http://www.concord.org/library/1999winter/newtechnology.html
Traianou, A. (2006). Teachers’ Adequacy of Subject
Knowledge in Primary Science: Assessing constructivist approaches from a
sociocultural perspective. International Journal of Science
Education, 28(8), 827–842. http://doi.org/10.1080/09500690500404409
Treffers, A. (1978). Wiskobas doelgericht. Een
metode van doelbeschrijving van het wiskundeonderwijs volgens
wiskobas. Utrecht: IOWO.
Treffers, A. (1993). Wiskobas and Freudenthal
realistic mathematics education. Educational Studies in
Mathematics, 25(1-2), 89–108. http://doi.org/10.1007/BF01274104
Treffers, A. (2005). De (on) navolgbare
Freudenthal. Panama-Post, 24(3), 135–144.
Retrieved from http://www.fisme.science.uu.nl/publicaties/literatuur/6644.pdf
Trninic, D., & Abrahamson, D. (2011). Emergent
ontology in embodied interaction: automated feedback as conceptual
placeholder. In L. R. Wiest & T. Lamberg (Eds.), Proceedings of the 33rd Annual Meeting of the North
American Chapter of the International Group for the Psychology of
Mathematics Education.
Trowbridge, D. E., & McDermott, L. C. (1981). Investigation of student understanding of the concept of
acceleration in one dimension. American Journal of
Physics, 49(3), 242–253. http://doi.org/10.1119/1.12525
Tversky, B. (2002). What do Sketches say about
Thinking. In 2002 AAAI Spring Symposium, Sketch
Understanding Workshop, Stanford University, AAAI Technical Report
SS-02-08. Retrieved from http://www.aaai.org/Papers/Symposia/Spring/2002/SS-02-08/SS02-08-022.pdf
Tversky, Barbara, Morrison, J. B., & Betrancourt, M. (2002). Animation: can it facilitate? International
Journal of Human-Computer Studies, 57(4), 247–262.
Tversky, Barbara, Tversky, B., & Tvesky, B. (1999). What does drawing reveal about thinking. In
In (pp. 93–101).
Vahey, P., Lara-Meloy, T., & Knudsen, J. (2009). Meeting the needs of diverse student populations:
Findings from the Scaling Up SimCalc project. In Proceedings of the 31st annual meeting of the North
American Chapter of the International Group for the Psychology of
Mathematics Education. Atlanta, GA: Georgia State University
(pp. 416–424). Retrieved from http://www.pmena.org/2009/proceedings/EQUITY%20AND%20DIVERSITY%20ISSUES/equityRR369979.pdf
Van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N.
(2006a). Educational design
research. Routledge London, New York. Retrieved from http://www.fi.uu.nl/publicaties/literatuur/EducationalDesignResearch.pdf
Van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N.
(2006b). Introducing educational design
research. In J. Van den Akker, K. Gravemeijer, S. McKenney, &
N. Nieveen (Eds.), Educational design
research. Routledge London, New York. Retrieved from http://www.fi.uu.nl/publicaties/literatuur/EducationalDesignResearch.pdf
Van den Heuvel-Panhuizen, M., & Drijvers, P. (2001). Realistic
Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education.
Springer. Retrieved from http://www.staff.science.uu.nl/~heuve108/download/Norway/01_RME/VdHeuvel-Drijvers_in%20press_ENCYCLOPEDIA-Realistic%20Mathematics%20Education.pdf
Van den Heuvel-Panhuizen, M., & Wijers, M. (2005). Mathematics standards and curricula in the
Netherlands. ZDM, 37(4), 287–307. Retrieved
from http://www.fisme.uu.nl/publicaties/literatuur/6663.pdf
Van Dooren, W., Ebersbach, M., & Verschaffel, L. (2010). Over rekenen, doen en weten. De ontwikkeling van
schoolse, impliciete en expliciete kennis over beweging op een hellend
vlak. Tijdschrift Voor Didactiek Der Beta-Wetenschappen,
27(1 & 2), 21–35.
Van Dooren, Wim, & Greer, B. (2010). Students’
Behavior in Linear and Non-linear Situations. Mathematical
Thinking and Learning, 12(1), 1–3.
Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in
science. International Journal of Science Education,
21(11), 1141–1153.
Van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994).
The think aloud method: A practical guide to
modelling cognitive processes. London: Academic Press.
Retrieved from http://staff.science.uva.nl/~maarten/Think-aloud-method.pdf
Vinner, S. (1997). The pseudo-conceptual and the
pseudo-analytical thought processes in mathematics learning.
Educational Studies in Mathematics, 34(2), 97–129.
Vogel, M., Girwidz, R., & Engel, J. (2007). Supplantation of mental operations on graphs.
Computers & Education, 49(4), 1287–1298.
Vollrath, H.-J. (1989). Funktionales Denken. Journal
für Mathematik-Didaktik, 10(1), 3–37.
http://doi.org/10.1007/BF03338719
Von Glasersfeld, E. (1984). An introduction to
radical constructivism. In P. Watzlawick (Ed.), The invented reality (pp. 17–40). New York:
Norton. Retrieved from http://anti-matters.org/ojs/index.php/antimatters/article/view/88/81
VTB-Pro. (n.d.). Uitwerking van het Theoretisch
Kader voor Professionalisering van Leerkrachten op het Gebied vna
Wetenschap en Techniek. Retrieved from http://www.vtbpro.nl//docs/VTB-Pro/Theoretisch%20Kader%20VTB-Pro.doc.pdf
Vygotsky, L. (1986). Thought and
language. Cambridge, Massachusetts: The MIT Press.
Wainer, H. (1992). Understanding Graphs and
Tables. Educational Researcher, 21(1), 14–23.
http://doi.org/10.3102/0013189X021001014
Waldrip, B., Prain, V., & Carolan, J. (2010). Using Multi-Modal Representations to Improve Learning in
Junior Secondary Science. Research in Science Education,
40(1), 65–80. http://doi.org/10.1007/s11165-009-9157-6
Walker, R. (2011). Design-Based Research. In L.
Markauskaite, P. Freebody, & J. Irwin (Eds.), Methodological Choice and Design (Vol. 9, pp.
51–56). Springer Netherlands. Retrieved from http://dx.doi.org/10.1007/978-90-481-8933-5_4
Wallis, C., & Steptoe, S. (2006). How to bring
our schools out of the 20th century. Time Magazine,
168(25), 50–56.
Watson, D. (2001). Pedagogy before technology:
Re-thinking the relationship between ICT and teaching.
Education and Information Technologies, 6(4), 251–266.
Webb, M. (2008). Impact of IT on science
education. International Handbook of Information Technology
in Primary and Secondary Education, 133–148.
Webb, N. M., & Mastergeorge, A. (2003). Promoting effective helping behavior in peer-directed
groups. International Journal of Educational Research,
39(1), 73–97.
Wegerif, R. (1996). Collaborative learning and
directive software. Journal of Computer Assisted
Learning, 12(1), 22–32.
Wegerif, R. (2002). Literature review in
thinking skills, technology and learning literature review in thinking
skills, technology and learning: a report for futurelab.
Futurelab. Retrieved from http://archive.futurelab.org.uk/resources/documents/lit_reviews/Thinking_Skills_Review.pdf
Weinberger, A., & Fischer, F. (2006). A
framework to analyze argumentative knowledge construction in
computer-supported collaborative learning. Computers &
Education, 46(1), 71–95.
Westra, R., Savelsbergh, E., Kortland, K., Prins, G., & Mooldijk, A.
(n.d.). Leren door zelf modelleren: constructief en
uitdagend onderwijs. Retrieved from http://www.cdbeta.uu.nl/vo/modelleren/literatuur/modelleer_NVOX.pdf
Wilensky, U., & Reisman, K. (2006). Thinking
like a wolf, a sheep, or a firefly: Learning biology through
constructing and testing computational theories—an embodied modeling
approach. Cognition and Instruction, 24(2),
171–209. Retrieved from http://ccl.sesp.northwestern.edu/papers/2006/Thinking_Like_a_Wolf(1).pdf
Wilhelm, J. A., & Confrey, J. (2003). Projecting rate of change in the context of motion onto
the context of money. International Journal of Mathematical
Education in Science and Technology, 34(6), 887–904.
Wilkening, F., & Huber, S. (2002). Children’s
intuitive physics. In U. Goswami (Ed.), Blackwell Handbook of Childhood Cognitive
Development (pp. 349–370).
Wilkerson-Jerde, M., & Wilensky, U. (2010). Seeing change in the world from different levels:
understanding the mathematics of complex systems, 190–192.
Retrieved from http://portal.acm.org/citation.cfm?id=1854509.1854601
Willoughby, S. S. (1997). Functions from
kindergarten through sixth grade. Teaching Children
Mathematics, 3, 314–318. Retrieved from http://sdcounts.tie.wikispaces.net/file/view/functions+from+Kto6th.pdf/61212116/functions%20from%20Kto6th.pdf
Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a
new paradigm of preference for school science investigations.
Science Education, 92(5), 941–967.
Wing, J. (2010). Computational Thinking: What
and Why? Retrieved from http://www.exploringcs.org/wp-content/uploads/2010/09/Wing-CT-Article.pdf
Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33–35. Retrieved
from http://livinglab.commons.gc.cuny.edu/files/2011/01/Wing061.pdf
Wing, J. M. (2008). Computational thinking and
thinking about computing. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
366(1881), 3717–3725. http://doi.org/10.1098/rsta.2008.0118
Woodgate, D., Fraser, D. S., & Crellin, D. (2007). Providing an “Authentic” Scientific
Experience: Technology, Motivation and Learning.
Woodruff, E., & Meyer, K. (1997). Explanations
from intra- and inter-group discourse: Students building knowledge in
the science classroom. Research in Science Education,
27(1), 25–39. http://doi.org/10.1007/BF02463030
Wu, H. K., & Krajcik, J. S. (2006). Inscriptional practices in two inquiry-based classrooms:
A case study of seventh graders’ use of data tables and graphs.
Journal of Research in Science Teaching, 43(1), 63–95.
Yackel, E., & Cobb, P. (1996). Sociomathematical Norms, Argumentation, and Autonomy in
Mathematics. Journal for Research in Mathematics
Education, 27(4), 458–477. Retrieved from http://www.jstor.org/stable/749877
Yavuz, İ. (2010). What does a graphical
representation mean for students at the beginning of function
teaching? International Journal of Mathematical Education in
Science and Technology, 41(4), 467–485. http://doi.org/10.1080/00207390903477442
Yelland, N. (1995). Mindstorms or a storm in a
teacup? A review of research with Logo. International Journal
of Mathematical Education in Science and Technology,
26(6), 853–869.
Yelland, N. (2005). The future is now: A review of
the literature on the use of computers in early childhood education
(1994-2004). AACE Journal, 13(3), 201–232.
Retrieved from http://www.editlib.org/f/6038
Yelland, N. J., Australia. Dept. of Education, T., & Affairs, Y.
(2001). Teaching and learning with information
and communication technologies (ICT) for numeracy in the early childhood
and primary years of schooling. Dept. of Education,
Training; Youth Affairs. Retrieved from http://www.dest.gov.au/archive/Research/fellowship/docs/Nicola_Yelland/Yelland_report.pdf
Yeo, S., Loss, R., Zadnik, M., Harrison, A., & Treagust, D. (2004).
What do students really learn from interactive
multimedia? A physics case study. American Journal of
Physics, 72(10), 1351–1358. http://doi.org/10.1119/1.1748074
Yerushalmy, M. (1997). Mathematizing verbal
descriptions of situations: A language to support modeling.
Cognition and Instruction, 15(2), 207–264.
Yin, R. K. (1989). Case study research: Design
and methods (Revised edition, Vol. 5). Newbury Park: SAGE
publications.
Youschkevitch, A. P. (1976). The concept of
function up to the middle of the 19th century. Archive for
History of Exact Sciences, 16(1), 37–85. http://doi.org/10.1007/BF00348305
Yusof, Y., & Tall, D. (1996). Conceptual and
procedural approaches to problem solving. In Proceedings of PME 20, Valencia 1996 (Vol. 4,
pp. 3–10). Retrieved from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1996g-yusof-pme.pdf
Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in
events. Journal of Experimental Psychology: General,
130(1), 29.
Zacks, J., & Tversky, B. (1999). Bars and
lines: A study of graphic communication. Memory &
Cognition, 27(6), 1073–1079. http://doi.org/10.3758/BF03201236
Zandieh, M. (2000). A theoretical framework for
analyzing student understanding of the concept of derivative. In
E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate Mathematics Education.
IV (Vol. 8, pp. 103–127).
Zaritsky, R., Kelly, A. E., Flowers, W., Rogers, E., & O’Neill, P.
(2003). Clinical design sciences: A view from
sister design efforts. Educational Researcher,
32(1), 32–34. Retrieved from https://www.aera.net/uploadedFiles/Journals\_and\_Publications/Journals/Educational\_Researcher/3201/3201\_Zaritsky.pdf
Zbiek, R. M., Heid, M. K., & Blume, G. (2007). Research on technology in mathematics education: the
perspecive of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and
learning (Vol. 2, pp. 1169–1207).
Zhou, Z., Peverly, S. T., Boehm, A. E., & Chongde, L. (2000). American and Chinese children’s understanding of
distance, time, and speed interrelations. Cognitive
Development, 15(2), 215–240. http://doi.org/10.1016/S0885-2014(00)00031-9
Zuccheri, L., & Zudini, V. (2014). History of
Teaching Calculus. In A. Karp & G. Schubring (Eds.),
Handbook on the History of Mathematics
Education (pp. 493–513). Springer New York.
http://doi.org/10.1007/978-1-4614-9155-2_24