An image of Heer de Beer

Heer de Beer.org

Exploring the Computational Medium

Bibliography

Huub de Beer

Abell, P. (2004). Narrative Explanation: An Alternative to Variable-Centered Explanation? Annual Review of Sociology, 30, 287–310. Retrieved from http://www.jstor.org/stable/29737695

Abrahamson, D. (2009). Embodied design: Constructing means for constructing meaning. Educational Studies in Mathematics, 70(1), 27–47. Retrieved from http://ccl.northwestern.edu/papers/2009/AbrahamsonESM2009.pdf

Abrahamson, D., Lee, R., Negrete, A., & Gutiérrez, J. (2014). Coordinating visualizations of polysemous action: values added for grounding proportion. ZDM, 46(1), 79–93. http://doi.org/10.1007/s11858-013-0521-7

Ackermann, E. (1991). From decontextualized to situated knowledge: revisiting Piaget’s water-level experiment. In I. Harel & S. Papert (Eds.), Constructionism (pp. 269–294).

Ackermann, E. (2001). Piaget’s Constructivism, Papert’s Constructionism: What’s the difference? In Constructivism: uses and perspectives in education. Conference proceedings, Geneva, September 2001. Retrieved from http://learning.media.mit.edu/content/publications/EA.Piaget%20_%20Papert.pdf

Aikenhead, G. S. (1996). Science Education: Border Crossing into the Subculture of Science. Studies in Science Education, 27, 1–52. Retrieved from http://www.usask.ca/education/people/aikenhead/sse\_border.pdf

Ainley, J. (1995). Re-viewing graphing: Traditional and intuitive approaches. For the Learning of Mathematics, 15(2), 10–16.

Ainley, J., Enger, L., & Searle, D. (2008). Students in a Digital Age: Implications of ICT for Teaching and Learning. In J. Voogt & G. Knezek (Eds.), International Handbook of Information Technology in Primary and Secondary Education (Vol. 20, pp. 63–80). Springer US. Retrieved from http://dx.doi.org/10.1007/978-0-387-73315-9_4

Ainley, J., Nardi, E., & Pratt, D. (2000). The construction of meanings for trend in active graphing. International Journal of Computers for Mathematical Learning, 5, 85–114. Retrieved from http://dx.doi.org/10.1023/A:1009854103737

Ainley, J., Pratt, D., & Nardi, E. (2001). Normalising: children’s activity to construct meanings for trend. Educational Studies in Mathematics, 45(1), 131–146.

Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131–152.

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. http://doi.org/10.1016/j.learninstruc.2006.03.001

Ainsworth, S. (2008). How do animations influence learning. In D. Robinson & G. Schraw (Eds.), Current perspectives on cognition, learning, and instruction: Recent innovations in educational technology that facilitate student learning (pp. 37–67). Information Age Publishing Charlotte, NC.

Ainsworth, S., & VanLabeke, N. (2004). Multiple forms of dynamic representation. Learning and Instruction, 14(3), 241–255. http://doi.org/10.1016/j.learninstruc.2004.06.002

Ainsworth, S., Bibby, P., & Wood, D. (1997). Information technology and multiple representations: new opportunities – new problems. Journal of Information Techology for Teacher Education, 6(1), 93–105. http://doi.org/10.1080/14759399700200006

Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple representational systems in learning primary mathematics. The Journal of the Learning Sciences, 11(1), 25–61.

Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097. Retrieved from http://podolskyr.people.cofc.edu/biol211/other/Ainsworth.pdf

Akerson, V. L., White, O., Colak, H., & Pongsanon, K. (2011). Relationships Between Elementary Teachers’ Conceptions of Scientific Modeling and the Nature of Science. In M. S. Khine & I. M. Saleh (Eds.), Models and Modeling (Vol. 6, pp. 221–237). Springer Netherlands. http://doi.org/10.1007/978-94-007-0449-7_10

Akker, J. van den. (1999). Principles and methods of development research. In J. van den Akker (Ed.), Design approaches and tools in education and training (Vol. 14). Dordrecht: Kluwer Academic Publishers.

Akker, J. van den, Bannan, B., Kelly, A., Nieveen, N., & Plomp, T. (2013). Educational Design Research. (T. Plomp & N. Nieveen, Eds.) (Vol. A). SLO. Retrieved from http://international.slo.nl/edr/

Alberts, G., & Kaenders, R. (2005). Ik liet de kinderen wél iets leren. Nieuw Archief Voor de Wiskunde, 5/6(3), 247–251. Retrieved from http://www.math.leidenuniv.nl/~naw/serie5/deel06/sep2005/pdf/hiele.pdf

Alexopoulou, E., & Driver, R. (1996). Small-group discussion in physics: Peer interaction modes in pairs and fours. Journal of Research in Science Teaching, 33(10), 1099–1114. http://doi.org/10.1002/(SICI)1098-2736(199612)33:10<1099::AID-TEA4>3.0.CO;2-N

Amoah, V. K. (2003). Situated cognition and students’ conceptual understanding of elementary calculus. Proceedings of the British Society for Research into Learning Mathematics, 23(2). Retrieved from http://www.bsrlm.org.uk/IPs/ip23-2/BSRLM-IP-23-2-1.pdf

Andel, P. V. (1994). Anatomy of the unsought finding. serendipity: Orgin, history, domains, traditions, appearances, patterns and programmability. The British Journal for the Philosophy of Science, 45(2), 631–648.

Anderson, D., & Clark, M. (2012). Development of syntactic subject matter knowledge and pedagogical content knowledge for science by a generalist elementary teacher. Teachers and Teaching, 18(3), 315–330. http://doi.org/10.1080/13540602.2012.629838

Anderson, L. (2006). Analytic Autoethnography. Journal of Contemporary Ethnography, 35(4), 373–395. http://doi.org/10.1177/0891241605280449

Anderson, T., & Shattuck, J. (2012). Design-Based Research A Decade of Progress in Education Research? Educational Researcher, 41(1), 16–25.

Anjewierden, A., & Gijlers, H. (2008). An exploration of tool support for categorical coding. In Proceedings of the 8th international conference on International conference for the learning sciences-Volume 1 (pp. 35–42). International Society of the Learning Sciences.

Appleton, K. (2002). Science Activities That Work: Perceptions of Primary School Teachers. Research in Science Education, 32(3), 393–410. http://doi.org/10.1023/A:1020878121184

Appleton, K. (2006). Science pedagogical content knowledge and elementary school teachers. In K. Appleton (Ed.), Elementary science teacher education: International perspectives on contemporary issues and practice (pp. 31–54). Mahwah, NJ: Lawrence Erlbaum.

Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24–35. Retrieved from http://stwww.weizmann.ac.il/department40/publications/Arcavi/8%20Symbol%20Sense%201994.pdf

Arcavi, A. (2005). Developing and using symbol sense in mathematics. For the Learning of Mathematics, 25(2), 42–47. Retrieved from http://stwww.weizmann.ac.il/department40/publications/Arcavi/22%20Symbol%20Sense%202005.pdf

Arcavi, A. (2008). Modelling with graphical representations. For the Learning of Mathematics, 28(2), 2–10.

Arcavi, A., & Isoda, M. (2007). Learning to listen: from historical sources to classroom practice. Educational Studies in Mathematics, 66(2), 111–129.

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.

Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. E. (1997). The development of students’ graphical understanding of the derivative. The Journal of Mathematical Behavior, 16(4), 399–431. http://doi.org/10.1016/S0732-3123(97)90015-8

Åberg-Bengtsson, L. (1996). Studying primary school children’s learning of graphics: some experiences using video recordings as data. In NFPF-kongressen’96 "Pedagogikkog teknologi - nye utfordringer". Høgskolen i Lillehammer, 7- 10 March 1996. Retrieved from http://www.ped.gu.se/projekt/KIKI/personer/pdffiles/nfpf96.pdf

Åberg-Bengtsson, L., & Ottosson, T. (1995). Primary school children’s understanding of bar charts and line grpahs: A preliminary analysis. In 6th EARLi conference, Nijmegen, the Netherlands August 26–31.

Babb, J. (2005). Mathematical Concepts and Proofs from Nicole Oresme. Science & Education, 14(3), 443–456.

Bagni, G. T. (2005). The historical roots of the limit notion: Cognitive development and the development of representation registers. Canadian Journal of Science, Mathematics and Technology Education, 5(4), 453–468. http://doi.org/10.1080/14926150509556675

Bain, J. (1994, September 28). Understanding by learning or learning by understanding.

Baker, M. (1994). A model for negotiation in teaching-learning dialogues. Journal of Artificial Intelligence and Education, 5, 199–254.

Baker, M. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (Vol. 1, pp. 1–25).

Baker, M., & Lund, K. (1997). Promoting reflective interactions in a CSCL environment. Journal of Computer Assisted Learning, 13(3), 175–193.

Bakker, A. (2004). Design research in statistics education: on symbolizing and computer tools (PhD thesis). Universiteit Utrecht. Retrieved from http://igitur-archive.library.uu.nl/dissertations/2004-0513-153943/inhoud.htm

Bakker, A., & Gravemeijer, K. (2004). Learning to reason about distribution. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 147–168). Springer.

Bakker, A., & Hoffmann, M. H. (2005). Diagrammatic reasoning as the basis for developing concepts: a semiotic analysis of students’learning about statistical distribution. Educational Studies in Mathematics, 60, 333–358. Retrieved from http://www.jstor.org/stable/25047200

Bakker, A., & van Eerde, H. (2013). An introduction to design-based research with an example from statistics education. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Doing qualitative research: methodology and methods in mathematics education.

Ball, D. L. (1993). With an Eye on the Mathematical Horizon: Dilemmas of Teaching Elementary School Mathematics. The Elementary School Journal, 93(4), 373–397.

Ball, D. L., & Bass, H. (2002). Toward a practice-based theory of mathematical knowledge for teaching. In Proceedings of the Annual Meeting of the Canadian Mathematics Education Study Group. Kingston, Canada: CMESG (pp. 3–14).

Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 15–17, 20–22, 43–46.

Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of research on teaching (Vol. 4, pp. 433–456).

Banchi, H., & Bell, R. (2008). The Many Levels of Inquiry. Science and Children, 46(2), 26–29. Retrieved from http://www.miseagrant.umich.edu/lessons/files/2013/05/The-Many-Levels-of-Inquiry-NSTA-article.pdf

Bannan-Ritland, B. (2003). The role of design in research: The integrative learning design framework. Educational Researcher, 32(1), 21–24. Retrieved from http://www.coe.tamu.edu/~rcapraro/Articles/Design%20Experiments/Role%20of%20Design%20in%20RSCH%20The%20Integrative%20learning%20Design%20Framework.pdf

Barab, S. A., & Kirshner, D. (2001). Guest Editors’ Introduction. The Journal of the Learning Sciences, 10(1/2), 5–15.

Barab, S. A., & Luehmann, A. L. (2003). Building sustainable science curriculum: Acknowledging and accommodating local adaptation. Science Education, 87(4), 454–467.

Barab, S. A., & Squire, K. (2004). Design-based research: Putting a stake in the ground. Journal of the Learning Sciences, 13(1), 1–14. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.5080&rep=rep1&type=pdf

Barber, J. P., & Walczak, K. K. (2009). Conscience and Critic: peer debriefing strategies in grounded theory research. Retrieved from http://www.liberalarts.wabash.edu/storage/ConscienceCriticPeerDebriefing_%20BarberWalczak_AERA2009presentation.pdf

Barnes, M. (1995). An inuitive approach to calculus. Retrieved from http://hsc.csu.edu.au/maths/teacher_resources/2384/prof_reading/journals/barnes/M_Barnes_Nov_95.html

Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is Involved and What is the Role of the Computer Science Education Community? ACM Inroads, 2(1), 48–54. http://doi.org/10.1145/1929887.1929905

Barton, R. (1997). Computer-aided graphing: a comparative study. Technology, Pedagogy and Education, 6(1), 59–72.

Bassok, M., & Olseth, K. L. (1995). Object-based representations: Transfer between cases of continuous and discrete models of change. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(6), 1522–1538. Retrieved from http://search.proquest.com/docview/614327802?accountid=27128

Beach, K. (1999). Consequential transitions: A sociocultural expedition beyond transfer in education. Review of Research in Education, 24(1), 101–139. Retrieved from http://people.ucsc.edu/\~gwells/Files/Courses_Folder/ED%20261%20Papers/Beach%20Transfer.pdf

Beauchamp, G., & Kennewell, S. (2008). The influence of ICT on the interactivity of teaching. Education and Information Technologies, 13(4), 305–315.

Beer, H. de, Gravemeijer, K., & Eijck, M. van. (2015). Discrete and continuous reasoning about change in primary school classrooms. ZDM, 1–16. http://doi.org/10.1007/s11858-015-0684-5

Beer, H. de, Gravemeijer, K., & Eijck, M. van. (in preparationa). Starting points for a local instruction theory on teaching instantaneous speed in primary school.

Beer, H. de, Gravemeijer, K., & Eijck, M. van. (n.d.-b). Teaching primary calculus: an hypothetical learning theory based on emergent modeling.

Beer, H. de, Gravemeijer, K., & Eijck, M. van. (2017). A proposed local instruction theory for teaching instantaneous speed in grade five. The Mathematics Enthusiast, 14(1), 435–468. Retrieved from http://scholarworks.umt.edu/tme/vol14/iss1/24

Bell, P. (2004). On the theoretical breadth of design-based research in education. Educational Psychologist, 39(4), 243–253.

Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative Inquiry Learning: Models, tools, and challenges. International Journal of Science Education, 32(3), 349–377. http://doi.org/10.1080/09500690802582241

Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2008). A scaffolding framework to support the construction of evidence-based arguments among middle school students. Educational Technology Research and Development, 56(4), 401–422.

Bennett, S., & Maton, K. (2010). Beyond the ‘digital natives’ debate: Towards a more nuanced understanding of students’ technology experiences. Journal of Computer Assisted Learning, 26(5), 321–331. http://doi.org/10.1111/j.1365-2729.2010.00360.x

Bennett, S., Maton, K., & Kervin, L. (2008). The ‘digital natives’ debate: A critical review of the evidence. British Journal of Educational Technology, 39(5), 775–786. Retrieved from http://kimhuett.wiki.westga.edu/file/view/The-digital-natives-debate-A-critical-review-of-the-evidence.pdf

Berg, B. L. (2004). Qualitative research methods for the social sciences (5th ed.). Pearson Education.

Berg, E. van den, Schweickert, F., & Manneveld, G. (2009). Learning graphs and learning science with sensors in learning corners in fifth and sixth grade. Contemporary Science Education Research: Teaching, 383–394. Retrieved from http://www.esera2009.org/books/Book1_CSER_Teaching.pdf#page=397

Besson, U. (2010). Calculating and understanding: Formal models and causal explanations in science, common reasoning and physics teaching. Science & Education, 19(3), 225–257.

Betrancourt, M. (2005). The animation and interactivity principles in multimedia learning. In The Cambridge handbook of multimedia learning (pp. 287–296).

Bikner-Ahsbahs, A., & Prediger, S. (2006). Diversity of theories in mathematics education – How can we deal with it? ZDM, 38(1), 52–57.

Bingimlas, K. A. (2009). Barriers to the successful integration of ICT in teaching and learning environments: a review of the literature. Eurasia Journal of Mathematics, Science & Technology Education, 5(3), 235–245.

Black, P. (2009). In Response To: Alan Schoenfeld. Educational Designer, 1(3). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue3/article12

Blikstein, P. (2013). Digital Fabrication and ‘Making’in Education: The Democratization of Invention. FabLabs: Of Machines, Makers and Inventors, 1–21.

Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education–Discussion document. Educational Studies in Mathematics, 51(1), 149–171.

Bock, D. de, Dooren, W. van, Janssens, D., & Verschaffel, L. (2002). Improper use of linear reasoning: An in-depth study of the nature and the irresistibility of secondary school students’ errors. Educational Studies in Mathematics, 50(3), 311–334.

Boudourides, M. (2008). Constructivism, Education, Science, and Technology. Canadian Journal of Learning and Technology / La Revue Canadienne de L’apprentissage et de La Technologie, 29(3). Retrieved from http://www.cjlt.ca/index.php/cjlt/article/view/83/77

Boulter, C., & Buckley, B. (2000). Constructing a typology of models for science education. In Developing models in science education (pp. 41–57).

Bowden, J., Dall’Alba, G., Martin, E., Laurillard, D., Marton, F., Masters, G., … Walsh, E. (1992). Displacement, velocity, and frames of reference: Phenomenographic studies of students’ understanding and some implications for teaching and assessment. American Journal of Physics, 60(3), 262–269. http://doi.org/10.1119/1.16907

Bowers, J., Bezuk, N., & Aguilar, K. (2011). Adapting the mathematical task framework to design online didactic objects. International Journal of Mathematical Education in Science and Technology, 42(4), 481–495.

Boyd, A., & Rubin, A. (1996). Interactive video: A bridge between motion and math. International Journal of Computers for Mathematical Learning, 1(1), 57–93.

Boyer, C. (1959). The history of the calculus and its conceptual development.(The concepts of the calculus) (2nd ed.). Mineola: Dover Publications.

Bransford, J., & Schwartz, D. (1999). Rethinking transfer: A simple proposal with multiple implications. Review of Research in Education, 24, 61–100. Retrieved from http://artstart2011.pbworks.com/f/Bransford%2B%2526%2BSchwartz-transfer.pdf

Bransford, J., Brophy, S., & Williams, S. (2000). When Computer Technologies Meet the Learning Sciences: Issues and Opportunities. Journal of Applied Developmental Psychology, 21(1), 59–84. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.4619&rep=rep1&type=pdf

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141–178.

Brown, J., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42. Retrieved from http://www.psychology.nottingham.ac.uk/staff/sea/c8cxce/Readings/BrownCollinsDuguid1989.pdf

Buckingham, D., & Schultz, T. R. (2000). The Developmental Course of Distance, Time, and Velocity Concepts:A Generative Connectionist Model. Journal of Cognition and Development, 1(3), 305–345. Retrieved from http://www.psych.mcgill.ca/perpg/fac/shultz/personal/Recent\_Publications\_files/dtv00.pdf

Buijs, K., Klep, J., & Noteboom, A. (2008). TULE - Rekenen/wiskunde. Inhouden en activiteiten bij de kerndoelen. Inhoud van de website tule.slo.nl. Retrieved from http://www.slo.nl/downloads/2008/tule-rekenenwiskunde2011.pdf

Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical Computing, 1(2), 67–69.

Burkhardt, H., & Schoenfeld, A. (2003). Improving educational research: toward a more useful, more influential, and better-funded enterprise. Educational Researcher, 32(9), 3–14.

Burks, A. W. (1946). Peirce’s theory of abduction. Philosophy of Science, 301–306. Retrieved from http://people.ucsc.edu/~ktellez/abduction.pdf

Campbell, T., Oh, P. S., & Neilson, D. (2012). Discursive Modes and Their Pedagogical Functions in Model-Based Inquiry (MBI) Classrooms. International Journal of Science Education, 34(15), 2393–2419.

Carey, S. (1992). The origin and evolution of everyday concepts. In R. Giere (Ed.), Cognitive models of science (pp. 89–128). University of Minnesota Press. Retrieved from http://www.wjh.harvard.edu/~lds/pdfs/carey1992a.pdf

Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13–19.

Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235–251. http://doi.org/10.1207/s15326985ep2803_4

Carlson, M. (1998). A cross-sectional investigation of the development of the function concept. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in collegiate mathematics education (Vol. 7, pp. 115–162). Retrieved from http://stat.asu.edu/~carlson/crosssec.pdf

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378.

Carlson, M., Larsen, S., & Lesh, R. (2003). Integrating a models and modeling perspective with existing research and practice. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 465–478). Hillsdale: Lawrence Erlbaum Associates. Retrieved from http://math.clas.asu.edu/~carlson/chap25.pdf

Carlson, M., Oehrtman, M., & Engelke, N. (2010). The Precalculus Concept Assessment: A Tool for Assessing Students’ Reasoning Abilities and Understandings. Cognition and Instruction, 28(2), 113–145.

Carmichael, P. (2002). Extensible Markup Language and Qualitative Data Analysis. Forum: Qualitative Sozialforschung, 3(2). Retrieved from http://www.qualitative-research.net/index.php/fqs/article/view/852/1851

Carpenter, J. (2007). AC 2007-961: INTEGRATING CALCULUS AND INTRODUCTORY SCIENCE CONCEPTS.

Carroll, J. W. (2002). Instantaneous motion. Philosophical Studies, 110(1), 49–67.

Carter, L. (2005). Globalisation and science education: Rethinking science education reforms. Journal of Research in Science Teaching, 42(5), 561–580. http://doi.org/10.1002/tea.20066

Castells, M. (1997). An introduction to the information age. City, 2(7), 6–16.

Castillo-Garsow, C. (2012). Continuous Quantitative Reasoning. In R. Mayes, R. Bonillia, L. L. Hatfield, & S. Belbase (Eds.), Quantitative reasoning and Mathematical Modeling: A Driver for STEM Integrated Education and Teaching in Context (pp. 55–73). Retrieved from http://www.uwyo.edu/wisdome/_files/documents/castillo_garsow.pdf

Castillo-Garsow, C., Johnson, H. L., & Moore, K. C. (n.d.). Chunky and Smooth Images of Change. Retrieved from http://yeolcoatl.net/research/2012_cwcg_chunky_and_smooth_endfig.pdf

Chang, H.-Y. (2012). Teacher guidance to mediate student inquiry through interactive dynamic visualizations. Instructional Science, 1–26. http://doi.org/10.1007/s11251-012-9257-y

Chen, D., & Stroup, W. (1993). General system theory: Toward a conceptual framework for science and technology education for all. Journal of Science Education and Technology, 2(3), 447–459.

Chi, M. (2009). Active-constructive-interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73–105.

Chi, M., & Roscoe, R. (2002). The processes and challenges of conceptual change. Reconsidering Conceptual Change: Issues in Theory and Practice, 3–27.

Cho, J., & Trent, A. (2006). Validity in qualitative research revisited. Qualitative Research, 6(3), 319–340. http://doi.org/10.1177/1468794106065006

Christie, D., Tolmie, A., Thurston, A., Howe, C., & Topping, K. (2009). Supporting group work in Scottish primary classrooms: improving the quality of collaborative dialogue. Cambridge Journal of Education, 39(1), 141–156.

Cicero, M. L. L., & Spagnolo, F. (2009). The use of motion sensor can lead the students to understanding the cartesian graph. In Proceedings of the Sixth Conference of European Research in Mathematics Education, Lyon, France, 2009 (pp. 250–259). Retrieved from http://math.unipa.it/~grim/service/tesi_PhD_marzo_2010/Lo%20Cicero%20ML_tesi%20PhD%202010/ALLEGATO%202.pdf

Clagett, M. (1959). The science of mechanics in the middle ages. The University of Wisconsin Press.

Clandinin, D. (2006). Narrative Inquiry: A Methodology for Studying Lived Experience. Research Studies in Music Education, 27(1), 44–54. http://doi.org/10.1177/1321103X060270010301

Clement, J. (1989a). Learning via model construction and criticism. Handbook of Creativity: Assessment, Theory and Research, 341–381.

Clement, J. (1989b). The Concept of Variation and Misconceptions in Cartesian Graphing. Focus on Learning Problems in Mathematics, 11(1), 77–87.

Clements, D. H. (1999). The future of educational computing research: The case of computer programming. Information Technology in Childhood Education, 1, 147–179. Retrieved from http://investigations.terc.edu/library/bookpapers/educational_computing.pdf

Clements, D. H., & Sarama, J. (2004). Learning Trajectories in Mathematics Education. Mathematical Thinking and Learning, 6(2), 81–89. http://doi.org/10.1207/s15327833mtl0602_1

Clements, M. (2014). Fifty Years of Thinking About Visualization and Visualizing in Mathematics Education: A Historical Overview. In M. N. Fried & T. Dreyfus (Eds.), Mathematics & Mathematics Education: Searching for Common Ground (pp. 177–192). Springer Netherlands. http://doi.org/10.1007/978-94-007-7473-5_11

Clements, M., Keitel, C., Bishop, A., Kilpatrick, J., & Leung, F. (2013). From the Few to the Many: Historical Perspectives on Who Should Learn Mathematics. In M. (. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. Leung (Eds.), Third International Handbook of Mathematics Education (Vol. 27, pp. 7–40). Springer New York. http://doi.org/10.1007/978-1-4614-4684-2_1

Cobb, P. (2003). Chapter 1: Investigating Students’ Reasoning about Linear Measurement as a Paradigm Case of Design Research. In Supporting Students’ Development of Measuring Conceptions: Analyzing Students’ Learning in Social Context (Vol. 12, pp. 1–16). Retrieved from http://www.jstor.org/stable/30037718

Cobb, P. (2007). Putting philosophy to work. Coping with multiple theoretical frameworks. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: a project of the National Council of Teachers of Mathematics (Vol. 1, pp. 3–38).

Cobb, P., & Steffe, L. (1983). The constructivist researcher as teacher and model builder. Journal for Research in Mathematics Education, 14(2), 83–94. Retrieved from http://www.jstor.org/stable/748576

Cobb, P., & Whitenack, J. (1996). A method for conducting longitudinal analyses of classroom videorecordings and transcripts. Educational Studies in Mathematics, 30(3), 213–228. http://doi.org/10.1007/BF00304566

Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3), 175–190.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

Cobb, P., Jackson, K., & Dunlap, C. (2014). Design research: An analysis and critique. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education. Retrieved from http://peabody.vanderbilt.edu/docs/pdf/tl/dr-chpt-international-handbook.pdf

Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in classroom mathematical practices. Journal of the Learning Sciences, 10(1), 113–163. Retrieved from http://aim.psch.uic.edu/documents/cobb\_p\_etal\_inpr.pdf

Cobb, P., Yackel, E., & Wood, T. (1992). A Constructivist Alternative to the Representational View of Mind in Mathematics Education. Journal for Research in Mathematics Education, 23(1), 2–33.

Cobern, W. W. (1996). Worldview theory and conceptual change in science education. Science Education, 80(5), 579–610.

Cobo, C. (). Strategies to promote the development of e-competences in the next generation of professionals: European and International trends. SKOPE Issues Paper Series.

Cobo, C. (2013). Skills for innovation: envisioning an education that prepares for the changing world. Curriculum Journal, 24(1), 67–85. http://doi.org/10.1080/09585176.2012.744330

Cohen, S. (n.d.). The Challenging Concept of Change Over Time. Retrieved from http://www.historycooperative.org/journals/whc/6.2/cohen.html

Cole, M., Engeström, Y., Sannino, A., Gutiérrez, K., Jurow, S., Packer, M., … Miller, S. (2014). Toward an argumentative grammar for socio-cultural/cultural-historical activity approaches to design research. In ICLS 2014 Proceedings (pp. 1254–1263). Retrieved from http://www.isls.org/icls2014/downloads/ICLS%202014%20Volume%203%20%28PDF%29-wCover.pdf

Coll, R. K., & Lajium, D. (2011). Modeling and the Future of Science Learning. In M. S. Khine & I. M. Saleh (Eds.), Models and Modeling (Vol. 6, pp. 3–21). Springer Netherlands.

Coll, R. K., France, B., & Taylor, I. (2005). The role of models and analogies in science education: implications from research. International Journal of Science Education, 27(2), 183–198. http://doi.org/10.1080/0950069042000276712

Collins, A., & Brown, J. (1986). The Computer as a Tool for Learning through Reflection. Technical Report No. 376. Center for the Study of Reading.

Collins, A., & Halverson, R. (2009). Rethinking education in the age of technology. The digital revolution and schooling in America. New York: Teachers College Press.

Collins, A., & Halverson, R. (2010). The second educational revolution: rethinking education in the age of technology. Journal of Computer Assisted Learning, 26(1), 18–27. http://doi.org/10.1111/j.1365-2729.2009.00339.x

Collins, A., Brown, J., & Holum, A. (1991). Cognitive apprenticeship: Making thinking visible. American Educator, 15(3), 6–11.

Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal of the Learning Sciences, 13(1), 15–42. Retrieved from http://www.siumed.edu/dme/jc\_articles/Shin\_DesignResearch\_0217.pdf

Confrey, J. (1994). Splitting, similarity, and rate of change: A new approach to multiplication and exponential functions. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 291–330). SUNY Press, Albany, NY.

Confrey, J., & Costa, S. (1996). A critique of the selection of “mathematical objects” as a central metaphor for advanced mathematical thinking. International Journal of Computers for Mathematical Learning, 1(2), 139–168. Retrieved from http://www.springerlink.com/content/j5867663g1gt2463/fulltext.pdf

Confrey, J., & Smith, E. (1994). Comments on James Kaput’s Chapter. In A. Schoenfeld (Ed.), Mathematical Thinking and Problem-Solving (pp. 172–193). Hillsdale: Lawrence Erlbaum.

Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26(2), 135–164. Retrieved from http://www.jstor.org/stable/3482782

Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26(1), 66–86.

Conlon, T. (2000). Visions of change: information technology, education and postmodernism. British Journal of Educational Technology, 31(2), 109–116. http://doi.org/10.1111/1467-8535.00141

Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory (3e ed.). Sage.

Cornu, B. (1991). Limits. In D. Tall (Ed.), Advanced Mathematical Thinking (Vol. 11, pp. 153–166). Springer Netherlands. Retrieved from http://dx.doi.org/10.1007/0-306-47203-1_10

Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. Journal of Mathematical Behavior, 15(2), 167–192. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.7665&rep=rep1&type=pdf

Council, C. for the W. on C. T. N. R. (2010). Report of a Workshop on The Scope and Nature of Computational Thinking. The National Academies Press. Retrieved from http://www.nap.edu/openbook.php?record_id=12840

Council, C. for the W. on C. T. N. R. (2011). Report of a Workshop on the Pedagogical Aspects of Computational Thinking. The National Academies Press. Retrieved from http://www.nap.edu/openbook.php?record_id=13170

Cox, G., & Garcia Garcia, G. (2008). Diagrams in the UK National School Curriculum. In Diagrammatic representation and inference: 5th international conference, Diagrams 2008, Herrsching, Germany, September 19-21, 2008: proceedings (Vol. 5223, pp. 360–363). Springer-Verlag New York Inc.

Cox, R. (1999). Representation construction, externalised cognition and individual differences. Learning and Instruction, 9(4), 343–363. http://doi.org/10.1016/S0959-4752(98)00051-6

Cramer, K. (2001). Using models to build middle-grade students’ understanding of functions. Mathematics Teaching in the Middle School, 6(1). Retrieved from http://www.cehd.umn.edu/rationalnumberproject/01_1.html

Cronin, M. A., Gonzalez, C., & Sterman, J. D. (2009). Why don’t well-educated adults understand accumulation? A challenge to researchers, educators, and citizens. Organizational Behavior and Human Decision Processes, 108(1), 116–130. http://doi.org/10.1016/j.obhdp.2008.03.003

Crook, C. (1998). Children as computer users: the case of collaborative learning. Computers & Education, 30(3-4), 237–247.

Davis, E. (2000). Scaffolding students’ knowledge integration: prompts for reflection in KIE. International Journal of Science Education, 22(8), 819–837. http://doi.org/10.1080/095006900412293

Davis, E. (2003). Prompting Middle School Science Students for Productive Reflection: Generic and Directed Prompts. Journal of the Learning Sciences, 12(1), 91–142. http://doi.org/10.1207/S15327809JLS1201_4

Davis, N., & Loveless, A. (2011). Reviewing the landscape of ICT and teacher education over 20 years and looking forward to the future. Technology, Pedagogy and Education, 20(3), 247–261. http://doi.org/10.1080/1475939X.2011.610928

Davis, R. (1994). What mathematics should students learn? The Journal of Mathematical Behavior, 13(1), 3–33. http://doi.org/10.1016/0732-3123(94)90031-0

Dawson, M. R. W. (2004). Minds and machines. Connectionism and psychological modeling. Blakwell Publishing.

De Wever, B., Schellens, T., Valcke, M., & Van Keer, H. (2006). Content analysis schemes to analyze transcripts of online asynchronous discussion groups: A review. Computers & Education, 46(1), 6–28.

DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582–601.

Dede, C. (2000). Emerging influences of information technology on school curriculum. Journal of Curriculum Studies, 32(2), 281–303. http://doi.org/10.1080/002202700182763

Dede, C. (2004). Commentaries: If Design-Based Research is the Answer, What is the Question? A Commentary on Collins, Joseph, and Bielaczyc; diSessa and Cobb; and Fishman, Marx, Blumenthal, Krajcik, and Soloway in the JLS Special Issue on Design-Based Research. Journal of the Learning Sciences, 13(1), 105–114. Retrieved from http://inkido.indiana.edu/design/dede.doc

Dede, C. (2005). Planning for “neomillennial” learning styles: Implications for investments in technology and faculty. In In (pp. 226–247). EDUCAUSE Publishers.

Dede, C. (2008). Theoretical Perspectives Influencing the Use of Information Technology in Teaching and Learning. In J. Voogt & G. Knezek (Eds.), International Handbook of Information Technology in Primary and Secondary Education (Vol. 20, pp. 43–62). Springer US. http://doi.org/10.1007/978-0-387-73315-9_3

Dede, C. (2010). Comparing frameworks for 21st century skills. 21st Century Skills: Rethinking How Students Learn, 51–76.

DeHart Hurd, P. (1998). Scientific literacy: New minds for a changing world. Science Education, 82(3), 407–416.

Dekker, R., & Elshout-Mohr, M. (1998). A process model for interaction and mathematical level raising. Educational Studies in Mathematics, 35(3), 303–314.

Dewey I. Dykstra, J., & Sweet, D. R. (2009). Conceptual development about motion and force in elementary and middle school students. American Journal of Physics, 77(5), 468–476. http://doi.org/10.1119/1.3090824

Dierdorp, A., Bakker, A., Eijkelhof, H., & Maanen, J. van. (2011). Authentic Practices as Contexts for Learning to Draw Inferences Beyond Correlated Data. Mathematical Thinking and Learning, 13(1-2), 132–151. http://doi.org/10.1080/10986065.2011.538294

Dijksterhuis, E. (1950). De mechanisering van het wereldbeeld. J.M. Meulenhoff.

Dillenbourg, P. (1999). What do you mean by collaborative learning? In P. Dillenbourg (Ed.), Collaborative-learning: Cognitive and computational approaches. (pp. 1–19). Oxford: Elsevier.

Dillenbourg, P., & Hong, F. (2008). The mechanics of CSCL macro scripts. International Journal of Computer-Supported Collaborative Learning, 3(1), 5–23.

diSessa, A. (1986). Artificial worlds and real experience. Instructional Science, 14(3), 207–227.

diSessa, A. (1988). Knowledge in pieces. Constructivism in the Computer Age, 49–70. Retrieved from http://131.193.130.213/media//disessa\_a\_1988.pdf

diSessa, A. (1991a). If we want to get ahead, we should get some theories. In Proceedings of the Annual Meeting of the North American Chapter, International Group for the Psychology of Mathematics Education: Plenary papers (pp. 220–239). Retrieved from http://www.eric.ed.gov/PDFS/ED352274.pdf

diSessa, A. (1991b). Local sciences: Viewing the design of human-computer systems as cognitive science. In J. M. Carroll (Ed.), Designing interaction. Psychology at the human-computer interface (pp. 162–202). Cambridge University Press.

diSessa, A. (1995). The Many Faces of a Computational Medium: Teaching the Mathematics of Motion. In A. diSessa, C. Hoyles, R. Noss, & L. D. Edwards (Eds.), Computers and Exploratory Learning (pp. 337–359). Springer.

diSessa, A. (2001). Changing minds: Computers, learning, and literacy. The MIT Press.

diSessa, A. (2002). Students’ criteria for representational adequacy. In K. Gravemeijer, R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing, Modeling and Tool Use in Mathematics Education (pp. 105–130). Kluwer Academic Publishers.

diSessa, A. (2006). A history of conceptual change research. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 265–281). Cambridge University Press.

diSessa, A., & Abelson, H. (1986). Boxer: a reconstructible computational medium. Communications of the ACM, 29(9), 859–868. http://doi.org/10.1145/6592.6595

diSessa, A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. Journal of the Learning Sciences, 13(1), 77–103.

diSessa, A., & Sherin, B. L. (2000). Meta-representation: an introduction. The Journal of Mathematical Behavior, 19(4), 385–398. http://doi.org/10.1016/S0732-3123(01)00051-7

diSessa, A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing Graphing: Meta-Representational Expertise in Children. Journal of Mathematical Behavior, 10(2), 117–60.

Doerr, H. (). An Integrated Approach to Mathematical Modeling: A Classroom Study. In Annual Meeting of the American Educational Research Association, April 18, 1995, San Francisco, Ca. Retrieved from http://eric.ed.gov/PDFS/ED387349.pdf

Dooren, W. van, Bock, D. de, & Verschaffel, L. (2013). How Students Connect Descriptions of Real-World Situations to Mathematical Models in Different Representational Modes. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching Mathematical Modelling: Connecting to Research and Practice (pp. 385–393). Springer Netherlands. http://doi.org/10.1007/978-94-007-6540-5_32

Doorman, M. (2003). Inzicht in snelheid en afgelegde weg via grafieken. Tijdschrift Voor Didactiek Der Bèta-Wetenschappen, 20(1), 1–25. Retrieved from http://www1.phys.uu.nl/wwwcdb/tdb/fulltext/Doorman_2003.pdf

Doorman, M. (2005). Modelling motion: from trace graphs to instantaneous change (PhD thesis). Utrecht University, the Netherlands.

Doorman, M., & Gravemeijer, K. (2009). Emergent modeling: discrete graphs to support the understanding of change and velocity. ZDM Mathematics Education, 41, 199–211.

Doorman, M., & Maanen, J. van. (2008). A Historical Perspective on Teaching and Learning Calculus. Australian Senior Mathematics Journal, 22(2), 4–14.

Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and the development of the function concept: from repeated calculations to functional thinking. International Journal of Science and Mathematics Education, 10(6), 1243–1267.

Dorst, K. (2011). The core of ‘design thinking’ and its application. Design Studies, 32(6), 521–532. http://doi.org/10.1016/j.destud.2011.07.006

Dragon, T., & Woolf, B. (2007). Understanding and advising students from within an inquiry tutor.

Driel, J. van, & Verloop, N. (2002). Experienced teachers’ knowledge of teaching and learning of models and modelling in science education. International Journal of Science Education, 24(12), 1255–1272.

Drijvers, P., Kieran, C., Mariotti, M., Ainley, J., Andresen, M., Chan, Y., … others. (2010). Integrating technology into mathematics education: Theoretical perspectives. Mathematics Education and Technology-Rethinking the Terrain, 89–132.

Dubinksy, E. (2000). Mathematical literacy and abstraction in the 21st century. School Science and Mathematics, 100(6), 289–297. Retrieved from http://www.math.kent.edu/~edd/NiessPaper.pdf

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In Advanced mathematical thinking (pp. 95–126). Springer. Retrieved from http://www.math.wisc.edu/~wilson/Courses/Math903/ReflectiveAbstraction.pdf

Dubinsky, E. (1994). Comments on James Kaput’s Chapter. In A. Schoenfeld (Ed.), Mathematical Thinking and Problem-Solving (pp. 157–171). Hillsdale: Lawrence Erlbaum.

Duffin, J., & Simpson, A. (2000). A search for understanding. The Journal of Mathematical Behavior, 18(4), 415–427.

Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649–672.

Duit, R., & Treagust, D. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.

Ebersbach, M., & Wilkening, F. (2007). Children’s Intuitive Mathematics: The Development of Knowledge About Nonlinear Growth. Child Development, 78(1), 296–308.

Ebersbach, M., Van Dooren, W., & Verschaffel, L. (2011). Knowledge on accelerated motion as measured by implicit and explicit tasks in 5 to 16 year olds. International Journal of Science and Mathematics Education, 9, 25–46. Retrieved from http://dx.doi.org/10.1007/s10763-010-9208-5

Ebersbach, M., Van Dooren, W., Goudriaan, M., & Verschaffel, L. (2010). Discriminating Non-linearity from Linearity: Its Cognitive Foundations in Five-Year-Olds. Mathematical Thinking and Learning, 12(1), 4–19.

Edge, D. (2005). Mathematics education research: designing, implementing and concluding. The Mathematics Educator, 9(1), 1–11.

Edgerton, S. (1985). The renaissance development of the scientific illustration. In J. W. Shirley & F. D. Hoenger (Eds.), Science and the arts in the renaissance (pp. 168–197). Associated University Press. Retrieved from http://faculty.winthrop.edu/kosterj/scholarly/ARTH480/edgerton.pdf

Edwards, L. (1995). Microworlds as representations. In A. A. diSessa, C. Hoyles, R. Noss, & L. D. Edwards (Eds.), Computers and exploratory learning (pp. 127–154). Springer.

Edwards, L. (1998). Embodying mathematics and science: Microworlds as representations. The Journal of Mathematical Behavior, 17(1), 53–78.

Eerde, H. van. (2013). Design research: Looking in to the heart of mathematics education. In Zulkardi (Ed.), Proceeding of the first Southeast Asian Design/Development Research Conference (pp. 1–10). Sriwijaya university.

Eijck, M. van, & Roth, W. (2010). Theorizing scientific literacy in the wild. Educational Research Review, 5(2), 184–194. http://doi.org/10.1016/j.edurev.2010.03.002

Eisenberg, M. (1995). Creating software applications for children: Some thoughts about design. In A. A. diSessa, C. Hoyles, R. Noss, & L. D. Edwards (Eds.), Computers and Exploratory Learning (pp. 175–196). Springer.

Elby, A. (2000). What students’ learning of representations tells us about constructivism. The Journal of Mathematical Behavior, 19(4), 481–502.

Elia, I., Panaoura, A., Eracleous, A., & Gagatsis, A. (2007). Relations between secondary pupils’ conceptions about functions and problem solving in different representations. International Journal of Science and Mathematics Education, 5(3), 533–556. Retrieved from http://www.springerlink.com/content/xqu7p752m8552434/fulltext.pdf

Ellis, C., & Bochner, A. (2000). Autoethnography, personal narrative, reflexivity: Researcher as subject. In N. Denzin & Y. Lincoln (Eds.), The Handbook of Qualitative Research (pp. 733–768). Sage.

Ellis, C., Adams, T., & Bochner, A. (2010). Autoethnography: An Overview. Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 12(1). Retrieved from http://www.qualitative-research.net/index.php/fqs/article/view/1589

Eng, T. (2005). The impact of ICT on learning: A review of research. International Education Journal Vol 6, No 5, 2005 I, 6(5), 635–650. Retrieved from http://www.eric.ed.gov/PDFS/EJ855017.pdf

Engelhardt, P., Corpuz, E., Ozimek, D., & Rebello, N. (2004). The Teaching Experiment – What it is and what it isn’t. In 2003 Physics Education Research Conference (Vol. 720, pp. 157–160). American Institute of Physics, 2 Huntington Quadrangle, Suite 1 NO 1, Melville, NY, 11747-4502, USA,

Ergazaki, M., Komis, V., & Zogza, V. (2005). High-school students’ reasoning while constructing plant growth models in a computer-supported educational environment. International Journal of Science Education, 27(8), 909–933.

Ernest, P. (2006). Reflections on theories of learning. ZDM, 38(1), 3–7.

Ernest, P. (2010). Commentary 2 on Reflections on Theories of Learning. In B. Sriraman & L. English (Eds.), Theories of Mathematics Education (pp. 53–61). Springer Berlin Heidelberg. Retrieved from http://dx.doi.org/10.1007/978-3-642-00742-2_6

Estrada-Medina, J., & Arenas-Sánchez, E. (2006). Understanding the relation between accumulation and its rate of change in a computational environment through simulation of dynamic situations. In Proceedings of the 28th annual meeting of the North American Chapter of the International Group for the Psychology of mathematics Education (Vol. 2, pp. 850–855). Retrieved from http://www.pmena.org/2006/cd/TECHNOLOGY/TECHNOLOGY-0000.pdf

Fagan, E. R. (2002). A summary of the research on student graphing misconceptions and their roots. Retrieved from http://www2.edc.org/edc-research/curriki/ROLE/lc/sessions/session6/MisconOnGraphs.pdf

Falbel, A. (1991). The computer as a convivial tool. In I. Harel & S. Papert (Eds.), Constructionism (pp. 29–37).

Fann, K. (1970). Peirce’s theory of abduction. The Hague: Martinus Nijhoff. Retrieved from http://www.dca.fee.unicamp.br/~gudwin/ftp/ia005/Peirce%20Theory%20of%20Abduction.pdf

Ferrari, A., Cachia, R., & Punie, Y. (2011). Educational Change through Technology: A Challenge for Obligatory Schooling in Europe. In C. Kloos, D. Gillet, R. Crespo García, F. Wild, & M. Wolpers (Eds.), Towards Ubiquitous Learning (Vol. 6964, pp. 97–110). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-23985-4_9

Ferrari, A., Punie, Y., & Redecker, C. (2012). Understanding Digital Competence in the 21st Century: An Analysis of Current Frameworks. In A. Ravenscroft, S. Lindstaedt, C. Kloos, & D. Hernández-Leo (Eds.), 21st Century Learning for 21st Century Skills (Vol. 7563, pp. 79–92). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-33263-0_7

Feurzeig, W. (2010). Toward a Culture of Creativity: A Personal Perspective on Logo’s Early Years and Ongoing Potential. International Journal of Computers for Mathematical Learning, 15(3), 257–265. Retrieved from http://dx.doi.org/10.1007/s10758-010-9168-4

Figueiredo, N., Galen, F. van, & Gravemeijer, K. (2009). The actor’s and observer’s point of view: A geometry applet as an example. Educational Designer, 1(3). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue3/article10

Fishman, B., Marx, R., Blumenfeld, P., Krajcik, J., & Soloway, E. (2004). Creating a framework for research on systemic technology innovations. Journal of the Learning Sciences, 13(1), 43–76. Retrieved from http://www.umich.edu/~hiceweb/downloads/JLS13\_1\_pp43\_76.pdf

Forbus, K. (2008). Qualitative modeling. In F. van Harmelen, V. Lifschitz, & B. Porter (Eds.), Handbook of Knowledge Representation (pp. 361–393). Elsevier.

Ford, M. (2003). Representing and meaning in history and in classrooms: developing symbols and conceptual organizations of free-fall motion. Science & Education, 12(1), 1–25.

Ford, M., Frederickson, A., & Martin, L. (2000). The Interpretation of Symbol Schemes in a Computational Medium. Retrieved from http://www.eric.ed.gov/PDFS/ED443404.pdf

Forster, P. A. (2004). Conceptualising Motion Through Dynamic Graphing. In.

Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in Mathematics, 3(3), 413–435.

Freudenthal, H. (1976). Wiskundeonderwijs anno 2000. Euclides, 52(8), 294. Retrieved from http://www.fisme.science.uu.nl/publicaties/literatuur/7205.pdf

Freudenthal, H. (1978). Weeding and sowing: Preface to a science of mathematical education. Springer.

Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: D. Reidel Publishing Company.

Freudenthal, H. (1991). Revisiting mathematics education: China lectures (Vol. 9). Springer.

Frey, C., & Osborne, M. (2013). The future of employment: how susceptible are jobs to computerisation? Retrieved from http://www.futuretech.ox.ac.uk/sites/futuretech.ox.ac.uk/files/The_Future_of_Employment_OMS_Working_Paper_0.pdf

Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making Sense of Graphs: Critical Factors Influencing Comprehension and Instructional Implications. Journal for Research in Mathematics Education, 32(2), pp. 124–158.

Friendly, M. (2008). A Brief History of Data Visualization. In Handbook of Data Visualization (pp. 15–56). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-540-33037-0_2

Frigg, R., & Hartmann, S. (2012). Models in Science. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2012). http://plato.stanford.edu/archives/fall2012/entries/models-science/.

Frigg, R., & Reiss, J. (2009). The philosophy of simulation: hot new issues or same old stew? Synthese, 169(3), 593–613. http://doi.org/10.1007/s11229-008-9438-z

Furinghetti, F. (2007). Teacher education through the history of mathematics. Educational Studies in Mathematics, 66, 131–143.

Gaisman, M. T., & Martínez-Planell, R. (2011). How are graphs of two vvariable taught? In Proceedings of the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, University of Nevada, Reno, Reno, NV.

Galen, F. van, & Gravemeijer, K. (2009). Dynamische grafieken op de basisschool.

Galen, F. van, & Gravemeijer, K. (2010). Dynamische grafieken op de basisschool. Ververs foundation. Retrieved from http://www.fi.uu.nl/rekenweb/grafiekenmaker/documents/dynamischegrafieken.pdf

Galen, F. van, Gravemeijer, K., Mulken, F. van, & Quant, E. (2012). Kinderen ononderzoeken ’snelheid’. Retrieved from http://www.fisme.science.uu.nl/rekenweb/grafiekenmaker/documents/kinderenonderzoekensnelheid.pdf

Garcia, G., & Cox, R. (2010). "Graph-as-Picture" Misconceptions in Young Students. In Diagrammatic Representation and Inference: 6th International Conference, Diagrams 2010, Portland, USA, August 9-11, 2010, Proceedings (pp. 310–312). Springer-Verlag.

Garcia Garcia, G., & Cox, R. (n.d.). Children who interpret graphs as pictures. Retrieved from http://celstec.org/system/files/file/conference_proceedings/aeid2009/papers/paper_163.pdf

Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223(4), 120–123. Retrieved from http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm

Ge, X., & Land, S. (2003). Scaffolding students’ problem-solving processes in an ill-structured task using question prompts and peer interactions. Educational Technology Research and Development, 51(1), 21–38.

Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45–56.

Gess-Newsome, J. (1999). Pedagogical Content Knowledge: An Introduction and Orientation. In J. Gess-Newsome & N. Lederman (Eds.), Examining Pedagogical Content Knowledge (Vol. 6, pp. 3–17). Springer Netherlands. http://doi.org/10.1007/0-306-47217-1_1

Gilbert, J. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115–130.

Gilbert, J., & Boulter, C. (1998). Learning Science Through Models and Modelling. In B. Fraser & K. Tohin (Eds.), International handbook of science education (pp. 53–66).

Gilbert, S. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73–79.

Gillies, R. (2011). Promoting thinking, problem-solving and reasoning during small group discussions. Teachers and Teaching: Theory and Practice, 17(1), 73–89.

Gillies, R. M. (2003). Structuring cooperative group work in classrooms. International Journal of Educational Research, 39(1–2), 35–49. http://doi.org/10.1016/S0883-0355(03)00072-7

Gillies, R., & Boyle, M. (2005). Teachers’ scaffolding behaviours during cooperative learning. Asia-Pacific Journal of Teacher Education, 33(3), 243–259.

Gillies, R., & Haynes, M. (2011). Increasing explanatory behaviour, problem-solving, and reasoning within classes using cooperative group work. Instructional Science, 39(3), 349–366.

Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: strategies for qualitative research (third paperback printing 2008). New Brunswick: Aldine Transaction.

Glasersfeld, E. von. (1981). Feedback, induction, and epistemology. In G. Lasker (Ed.), Applied systems and cybernetics (Vol. 2, pp. 712–719). New York: Pergamon Press.

Glasersfeld, E. von. (1989). Cognition, Construction of Knowledge, and Teaching., 80(1), 121–140. Retrieved from http://www.ffst.hr/~berislav/phed/filod2007/literatura/glasersfeld.pdf

Glasersfeld, E. von. (1995). Radical Constructivism: A Way of Knowing and Learning. Studies in Mathematics Education Series: 6. Routledge/Falmer.

Glazer, N. (2011). Challenges with graph interpretation: a review of the literature. Studies in Science Education, 47(2), 183–210. http://doi.org/10.1080/03057267.2011.605307

Goedhart, M. (1999). The use of van Hiele levels as a tool in the development of curricula for science education. Research in Science Education in Europe, 65–72.

Goodchild, S. (2010). Commentary 1 on Reflections on Theories of Learning by Paul Ernest. In B. Sriraman & L. English (Eds.), Theories of Mathematics Education (pp. 49–52). Springer Berlin Heidelberg. Retrieved from http://dx.doi.org/10.1007/978-3-642-00742-2_5

Gould, S. (2011). The Hedgehog, the Fox, and the Magister’s Pox. Mending the Gap between science and the humanities. The Belknap Press of Harvard University Press.

Grabiner, J. (1983). The changing concept of change: the derivative from Fermat to Weierstrass. Mathematics Magazine, 56(4), 195–206.

Grant, E. (1972). Nicole Oresme and the medieval geometry of qualities and motions. A treatise on the uniformity and difformity of intensities known as ‘tractatus de configurationibus qualitatum et motuum’: Marshall Clagett (ed. and tr.), edited with an introduction, English translation and commentary by Marshall Clagett. University of Wisconsin Press: Madison, Milwaukee, 1968; and London, 1969. xiii+713pp. £7.75. Studies in History and Philosophy of Science Part A, 3(2), 167–182. http://doi.org/10.1016/0039-3681(72)90022-2

Gravemeijer, K. (1994a). Developing realistic mathematics education (PhD thesis). Utrecht University.

Gravemeijer, K. (1994b). Educational development and developmental research in mathematics education. Journal for Research in Mathematics Education, 25(5), 443–471.

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155–177.

Gravemeijer, K. (2002). Preamble: From Models to Modeling. In K. Gravemeijer, R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing, Modeling and Tool Use in Mathematics Education (pp. 7–22). Kluwer Academic Publishers.

Gravemeijer, K. (2004). Local Instruction Theories as Means of Support for Teachers in Reform Mathematics Education. Mathematical Thinking and Learning, 6(2), 105–128.

Gravemeijer, K. (2005). Revisiting ’Mathematics education revisited’. Retrieved from http://www.fi.uu.nl/publicaties/literatuur/6638.pdf

Gravemeijer, K. (2007). Emergent modelling as a precursor to mathematical modelling. In P. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and Applications in mathematics education (pp. 137–144). Springer.

Gravemeijer, K. (2009). Leren voor later. Toekomstgerichte science- en techniekonderwijs voor de basisschool. Eindhoven: Technische universiteit Eindhoven. Retrieved from http://library.tue.nl/catalog/LinkToVubis.csp?DataBib=6:641950

Gravemeijer, K. (n.d.). Methodologische objectiviteit en kwalitatief onderzoek.

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. Van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 45–85). Routledge London, New York. Retrieved from http://www.fi.uu.nl/publicaties/literatuur/EducationalDesignResearch.pdf

Gravemeijer, K., & Cobb, P. (2007). Ontwikkelingsonderzoek als methode voor onderzoek rond innovatieve leergangen. Pedagogische Studiën, 84(5), 330–339.

Gravemeijer, K., & Cobb, P. (2013). Design research from the learning design perspective. In N. Nieveen & T. Plomp (Eds.), Educational design research (pp. 73–113). Enschede: SLO. Retrieved from http://international.slo.nl/publications/edr/

Gravemeijer, K., & Doorman, M. (1999). Context Problems in Realistic Mathematics Education: A Calculus Course as an Example. Educational Studies in Mathematics, 39(1/3), 111–129. Retrieved from http://www.jstor.org/stable/3483163

Gravemeijer, K., & Eerde, D. van. (2009). Design Research as a Means for Building a Knowledge Base for Teachers and Teaching in Mathematics Education. The Elementary School Journal, 109(5), 1–15.

Gravemeijer, K., & Terwel, J. (2000). Hans Freudenthal: a mathematician on didactics and curriculum theory. Journal of Curriculum Studies, 32(6), 777–796.

Gravemeijer, K., Bowers, J., & Stephan, M. (2003). Chapter 6: Continuing the Design Research Cycle: A Revised Measurement and Arithmetic Sequence. In Supporting Students’ Development of Measuring Conceptions: Analyzing Students’ Learning in Social Context (Vol. 12, pp. pp. 103–122). National Council of Teachers of Mathematics. Retrieved from http://www.jstor.org/stable/30037723

Gravemeijer, K., Cobb, P., Bowers, J., & Whitenack, J. (2000). Symbolizing, Modeling, and Instructional Design. In P. Cobb, E. Yackel, & K. McClain (Eds.), Communicating and symbolizing in mathematics: Perspectives on discourse, tools, and instructional design (pp. 225–274).

Gray, E., & Tall, D. (1994). Duality, Ambiguity, and Flexibility: A "Proceptual" View of Simple Arithmetic. Journal for Research in Mathematics Education, 25(2), pp. 116–140.

Gredler, M. (2004). Games and simulations and their relationships to learning. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (Vol. 2, pp. 571–581). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.3781&rep=rep1&type=pdf

Greer, B. (2010). Overview of the Papers: Why is Linear Thinking so Dominant? Mathematical Thinking and Learning, 12(1), 109–115. http://doi.org/10.1080/10986060903465996

Gregor, S., & Jones, D. (2007). The anatomy of a design theory. Journal of the Association for Information Systems, 8(5), 312–335.

Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the Field. Educational Researcher, 42(1), 38–43. http://doi.org/10.3102/0013189X12463051

Groves, S., & Doig, B. (2003). Shortest equals fastest: upper primary childrens pre-conceptions of speed. In International symposium elementary maths teaching: Prague, the Czech Republic, Charles University, Faculty of Education, August 24-29, 2003: proceedings (pp. 79–83).

Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries. Educational Technology Research and Development, 29(2), 75–91.

Guzdial, M. (1994). Software-Realized Scaffolding to Facilitate Programming for Science Learning. Interactive Learning Environments, 4(1), 1–44. Retrieved from http://guzdial.cc.gatech.edu/Emile-ILE.pdf

Guzdial, M. (2008). Education: Paving the Way for Computational Thinking. Commun. ACM, 51(8), 25–27. http://doi.org/10.1145/1378704.1378713

Hadjidemetriou, C., & Williams, J. (2010). The linearity prototype for graphs: cognitive and sociocultural perspectives. Mathematical Thinking and Learning, 12, 68–85. Retrieved from http://www.informaworld.com/index/918797446.pdf

Halloun, I., & Hestenes, D. (1985a). Common sense concepts about motion. American Journal of Physics, 53, 1056–1065.

Halloun, I., & Hestenes, D. (1985b). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043–1055.

Hancock, C. (1995). The Medium and the Curriculum: Reflections on Transparent Tools and Tacit Mathematics. In A. diSessa, C. Hoyles, R. Noss, & L. Edwards (Eds.), Computers and Exploratory Learning (Vol. 146, pp. 221–240). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-57799-4_12

Hancock, C., Kaput, J., & Goldsmith, L. T. (1992). Authentic Inquiry With Data: Critical Barriers to Classroom Implementation. Educational Psychologist, 27(3), 337–364.

Harel, G., & Confrey, J. (Eds.). (1994). The development of multiplicative reasoning in the learning of mathematics. SUNY Press.

Harel, I. (1991). The silent observer and holistic note taker: using video for documenting a research report. In I. Harel & S. Papert (Eds.), Constructionism (pp. 449–466).

Harel, I., & Papert, S. (1991). Software design as a learning environment. In I. Harel & S. Papert (Eds.), Constructionism (pp. 41–84).

Harrington, J. (2011, June). Instants and Instantaneous Velocity. Retrieved from http://philsci-archive.pitt.edu/8675/

Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026. http://doi.org/10.1080/095006900416884

Hartley, J. (1996). Text design. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 795–820). Retrieved from http://www.aect.org/edtech/ed1/pdf/27.pdf

Hartshorne, C., Weiss, P., & Burks, A. (1967). Collected Papers of Charles Sanders Peirce (Vol. 1). Harvard University Press. Retrieved from http://courses.arch.ntua.gr/fsr/138469/Peirce,%20Collected%20papers.pdf

Hassan, I., & Mitchelmore, M. (2006). The role of abstraction in learning about rates of change. In The 29th annual conference of the Mathematics Education Research Group of Australia (pp. 278–285).

Healy, L., & Kynigos, C. (2010). Charting the microworld territory over time: design and construction in mathematics education. ZDM, 42(1), 63–76.

Heer, J., & Shneiderman, B. (2012). Interactive Dynamics for Visual Analysis. Queue, 10(2), 30:30–30:55. http://doi.org/10.1145/2133416.2146416

Hegedus, S., & Kaput, J. (2004). An introduction to the profound potential of connected algebra activities: Issues of representation, engagement and pedagogy. In Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 129–136).

Heid, M. K., Lunt, J., Portnoy, N., & Zembat, I. O. (2006). Ways in which prospective secondary mathematics teachers deal with mathematical complexity. In 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education Mérida, Mexico (Vol. 2, pp. 2–9).

Herbert, S., & Pierce, R. (2005). Potential of technology and a familiar context to enhance students’ concept of rate of change. In MERGA 2005: Building connections: research, theory and practice: proceedings of the annual conference held at RMIT, Melbourne, 7th-9th July 2005 (pp. 435–442).

Herbert, S., & Pierce, R. (2008). An ‘Emergent Model’for Rate of Change. International Journal of Computers for Mathematical Learning, 13(3), 231–249.

Herbert, S., & Pierce, R. (2009). Revealing conceptions of rate of change. In Crossing divides: Proceedings of the 32nd annual conference of the Mathematics Education Research Group of Australasia (pp. 217–224).

Herbert, S., & Pierce, R. (2011). What is rate? Does context or representation matter? Mathematics Education Research Journal, 23(4), 455–477. http://doi.org/10.1007/s13394-011-0026-z

Herbert, S., & Pierce, R. (2012). Revealing educationally critical aspects of rate. Educational Studies in Mathematics, 81(1), 85–101. http://doi.org/10.1007/s10649-011-9368-4

Herheim, R., Krumsvik, R., & others. (2011). Verbal communication at a stand-alone computer. Journal for Educational Research Online, 3(1), 29–55.

Hestenes, D. (2006). Notes for a modeling theory of science, cognition and instruction, 20–25. Retrieved from http://www.girep.org/proceedings/conference2006/David_Hestenes_-_Notes_for_a_Modeling_Theory_of_Science,_Cognition_and_Instruction.pdf

Heuvel-Panhuizen, M. van den. (2001). Realistic mathematics education as work in progress. In F. Lin (Ed.), Common sense in mathematics education. Proceedings of 2001 the netherlands and taiwan conference on mathematics education, taiwan, 19-23 november 2001. Retrieved from http://www.staff.science.uu.nl/~heuve108/download/vdHeuvel_2001_RME%20as%20work-in-progress.pdf

Heuvel-Panhuizen, M. van den. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1), 9–35.

Heytesbury, W. (1335). In M. Clagett (Ed.), The Science of Mechanics in the Middle Ages.

Hiele, P. M. van. (1986). Structure and insight. A theory of mathematics education. London: Academic press.

Hipkins, R., Barker, M., & Bolstad, R. (2005). Teaching the ‘nature of science’: modest adaptations or radical reconceptions? International Journal of Science Education, 27(2), 243–254. http://doi.org/10.1080/0950069042000276758

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107. Retrieved from http://www.usc.edu/dept/education/cogtech/publications/hmelo_ep07.pdf

Hoadley, C. (2002). Creating context: Design-based research in creating and understanding CSCL. In Proceedings of the Conference on Computer Support for Collaborative Learning: Foundations for a CSCL Community (pp. 453–462). International Society of the Learning Sciences.

Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645–670. http://doi.org/10.1080/09500690305021

Hodson, D. (2006). Why we should prioritize learning about science. Canadian Journal of Math, Science & Technology Education, 6(3), 293–311.

Hogue, R. J. (2013). Epistemological Foundations of Educational Design Research. In World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (Vol. 2013, pp. 1915–1922).

Howe, C., Tolmie, A., Duchak-Tanner, V., & Rattray, C. (2000). Hypothesis testing in science: group consensus and the acquisition of conceptual and procedural knowledge. Learning and Instruction, 10(4), 361–391. http://doi.org/10.1016/S0959-4752(00)00004-9

Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education. In Second international handbook of mathematics education (Vol. 1, pp. 323–349).

Hoyles, C., & Noss, R. (2008). Next steps in implementing Kaput’s research programme. Educational Studies in Mathematics, 68(2), 85–97.

Hoyles, C., Noss, R., & Adamson, R. (2002). Rethinking the microworld idea. Journal of Educational Computing Research, 27(1), 29–53.

Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169(3), 615–626. http://doi.org/10.1007/s11229-008-9435-2

Hunt, B., Lamendella, R., Garrison, S., Burrows, A., Borowczak, M., & Kukreti, A. (2010). Go with the flow: Describing storm water runoff rates using the derivative. American Society for Engineering Education. Retrieved from https://www.uwplatt.edu/~buechlerd/AC2010-2133.pdf

Illari, P. (Ed.). (2013). The Philosophy of Information - a Simple Introduction. Retrieved from http://socphilinfo.org/sites/default/files/i2pi_2013.pdf

Inspectie van het Onderwijs. (2005). Techniek in het basisonderwijs. Inspectie van het Onderwijs. Retrieved from http://www.onderwijsinspectie.nl/binaries/content/assets/Actueel_publicaties/2005/Techniek+in+het+basisonderwijs.pdf

Inspectie van het Onderwijs. (2010). Onderwijsverslag 2008/2009. Inspectie van het Onderwijs. Retrieved from http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/publicaties-pb51/onderwijsverslag-2008-2009/de-staat-van-het-onderwijs.pdf

Issues, I. A. P. on I. (2003). 2003 Statement: Science Education. Retrieved from http://www.interacademies.net/default.aspx?id=7886

Jablonka, E., & Bergsten, C. (2010). Theorising in mathematics education research: differences in modes and quality. Nordisk Matematikkdidaktikk, 15(1), 25–52. Retrieved from http://pure.ltu.se/portal/files/4735209/Theorising_in_mathematics_education_research.pdf

Jacobson, M., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. Journal of the Learning Sciences, 15(1), 11–34.

Jankvist, U. (2009). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71(3), 235–261.

Janvier, C. (1981). Use of situations in mathematics education. Educational Studies in Mathematics, 12(1), 113–122. http://doi.org/10.1007/BF00386049

Janvier, C. (1987a). Conceptions and representations: the circle as an example. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 147–158).

Janvier, C. (1987b). Representation and understanding: the notion of function as an example. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 67–71).

Janvier, C. (1987c). Translation processes in mathematics education. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 27–32).

Jermann, P., Soller, A., Muehlenbrock, M., & others. (2001). From mirroring to guiding: A review of the state of art technology for supporting collaborative learning. In Proceedings of the European Conference on Computer-Supported Collaborative Learning EuroCSCL-2001. Maastricht, The Netherlands (pp. 324–331).

Johnson, H. L. (2011). Secondary students’ quantification of variation in rate of change. In Proceedings of the 33rd annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Reno, NV: University of Nevada, Reno.

Johnson, H. L. (2012a). Reasoning about quantities involved in rate of change as varying simultaneously and independently. In R. Mayes, R. Bonillia, L. L. Hatfield, & S. Belbase (Eds.), Quantitative reasoning and Mathematical Modeling: A Driver for STEM Integrated Education and Teaching in Context (pp. 39–53). Retrieved from http://www.uwyo.edu/wisdome/_files/documents/johnson.pdf

Johnson, H. L. (2012b). Reasoning about variation in the intensity of change in covarying quantities involved in rate of change. The Journal of Mathematical Behavior, 31(3), 313–330. http://doi.org/10.1016/j.jmathb.2012.01.001

Johnson, H. L. (2013). Using images of intensive and extensive quantity to extend a covariation framework. In.

Jonassen, D. H., & Strobel, J. (2006). Modeling for meaningful learning. In Engaged learning with emerging technologies (pp. 1–27). Retrieved from http://www.msu.ac.zw/elearning/material/1354783745Jonassen_strobel_modeling_2006.pdf

Jones, L. (1971). The nature of measurement. In R. Thorndike (Ed.), Educational Measurement (2nd ed.). Washington: American Council on Education.

Jones, S., & Scaife, M. (2000). Animated diagrams: An investigation into the cognitive effects of using animation to illustrate dynamic processes. In M. Anderson & P. Cheng (Eds.), Theory and Application of Diagrams (pp. 295–307). Berlin: Springer. Retrieved from http://www.sussex.ac.uk/Users/sarap/pdfs/Price\_diagrams2000.pdf

Jong, T. de, & Joolingen, W. van. (1998). Scientific Discovery Learning With Computer Simulations of Conceptual Domains. Review of Educational Research, 68(2), 179–201.

Joram, E., Hartman, C., & Trafton, P. (2004). "As People Get Older, They Get Taller". Teaching Children Mathematics, 345. Retrieved from http://www.math.ccsu.edu/mitchell/math409tcmaspeoplegetoldertheygettaller.pdf

Justi, R., & Gilbert, J. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.

Kafai, Y., & Harel, I. (1991a). Children learning through consulting: when mathematical ideas, knowledge of programming and design, and playful discourse are intertwined. In I. Harel & S. Papert (Eds.), Constructionism (pp. 111–140).

Kafai, Y., & Harel, I. (1991b). Learning through design and teaching: exploring social and collaborative aspects of constructionism. In I. Harel & S. Papert (Eds.), Constructionism (pp. 85–110).

Kaput, J. (1994a). Democratizing access to calculus: New routes to old roots. In A. Schoenfeld (Ed.), Mathematical Thinking and Problem-Solving (pp. 77–156). Hillsdale: Lawrence Erlbaum.

Kaput, J. (1994b). The representational roles of technology in connecting mathematics with authentic experience. In R. Biehler, R. Scholz, R. Sträßer, & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 379–397).

Kaput, J. (1997). Rethinking Calculus: Learning and Thinking. The American Mathematical Monthly, 104(8), pp. 731–737. Retrieved from http://www.jstor.org/stable/2975238

Kaput, J. (1998). Representations, Inscriptions, Descriptions and Learning: A Kaleidoscope of Windows. The Journal of Mathematical Behaviour, 17(2), 265–281.

Kaput, J., & Roschelle, J. (1998). The mathematics of change and variation from a millennial perspective: New content, new context. In C. Hoyles, C. Morgan, & G. Woodhouse (Eds.), Mathematics for a new millennium (pp. 155–170). London: Springer-Verlag. Retrieved from http://ctl.sri.com/publications/downloads/Millenium_preprint.pdf

Kaput, J., & Schorr, R. (2007). Changing representational infrastructures chages most everything: the case of SimCalc, algebra and calculus. In G. Blume & K. Heid (Eds.), Research on technology in the learning and teaching of mathematics (pp. 211–253). Mahwah, NJ: Erlbaum. Retrieved from http://www.kaputcenter.umassd.edu/downloads/simcalc/cc1/library/changinginfrastruct.pdf

Kaput, J., & Thompson, P. (1994). Technology in mathematics education research: The first 25 years in the JRME. Journal for Research in Mathematics Education, 25(6), 676–684.

Kaput, J., Bar-Yam, Y., Jacobson, M., Jakobsson, E., Lemke, J., & Wilensky, U. (2005). Planning documents for a national initiative on complex systems in k-16 education. Retrieved from http://www.necsi.edu/events/cxedk16/cxedk16.html

Kaput, J., Noss, R., & Hoyles, C. (2002). Developing new notations for a learnable mathematics in the computational era. In Handbook of international research in mathematics education (pp. 51–75).

Kelly, A. (2003). Theme issue: The role of design in educational research. Educational Researcher, 32(1), 3–4.

Kelly, A. (2004). Design research in education: Yes, but is it methodological? Journal of the Learning Sciences, 13(1), 115–128.

Kelly, A. (2013). When is design research appropriate? In T. Plomp & N. Nieveen (Eds.), Educational Design Research (Vol. A, pp. 135–150). SLO. Retrieved from http://international.slo.nl/edr

Kelly, J., Bradley, C., Gratch, J., & Maninger, R. (2007). A reflective discourse on science learning and the merits of simulation. Journal of Thought, 42(2), 23–38.

Kennewell, S., & Beauchamp, G. (2007). The features of interactive whiteboards and their influence on learning. Learning, Media and Technology, 32(3), 227–241.

Keogh, B., & Naylor, S. (1999). Concept cartoons, teaching and learning in science: an evaluation. International Journal of Science Education, 21(4), 431–446. http://doi.org/10.1080/095006999290642

Keulen, H. van, & Molen, J. W. van der (Eds.). (2009). Onderzoek naar wetenschap en techniek in het Nederlandse basisonderwijs. Den Haag: Platform Bèta Techniek.

Keulen, H. van. (2009). Drijven en Zinken. Wetenschap en techniek in het primair onderwijs. Fontys Hogescholen. Retrieved from http://www.ecent.nl/servlet/supportBinaryFiles?referenceId=1&supportId=1969

Khine, M. S., & Saleh, I. M. (Eds.). (2011). Models and modeling: cognitive tools for scientific enquiry (Vol. 6). Springer Science+Business Media.

Kim, M., & Hannafin, M. (2011). Scaffolding 6th graders’ problem solving in technology-enhanced science classrooms: a qualitative case study. Instructional Science, 39(3), 255–282.

Kind, V. (2009). Pedagogical content knowledge in science education: perspectives and potential for progress. Studies in Science Education, 45(2), 169–204. http://doi.org/10.1080/03057260903142285

King, A. (2002). Structuring peer interaction to promote high-level cognitive processing. Theory into Practice, 41(1), 33–39.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Educational Psychologist, 41(2), 75–86. http://doi.org/10.1207/s15326985ep4102_1

Kleiner, I. (1989). Evolution of the Function Concept: A Brief Survey. The College Mathematics Journal, 20(4), 282–300. Retrieved from http://stellasbuds.com/classes/assets/a_evfcn.pdf

Knowlton, D. (2007). I design; therefore I research: Revealing DBR through personal narrative. JOURNAL OF EDUCATIONAL TECHNOLOGYAND SOCIETY, 10(4), 209.

Kock, Z., Taconis, R., Bolhuis, S., & Gravemeijer, K. (2013). Some key issues in creating inquiry-based instructional practices that aim at the understanding of simple electric circuits. Research in Science Education, 1–19. Retrieved from http://link.springer.com/article/10.1007/s11165-011-9278-6/fulltext.html

Koklu, O. (2007). An investigation of college students’ covariational reasonings (PhD thesis). Florida State University; The Florida State University. Retrieved from http://etd.lib.fsu.edu/theses/available/etd-07082007-234700/unrestricted/okokludissertation.pdf

Kolovou, A., Van den Heuvel-Panhuizen, M., & Bakker, A. (2009). Non-routine problem solving tasks in primary school mathematics textbooks–A needle in a haystack. Mediterranean Journal for Research in Mathematics Education, 8(2), 31–68. Retrieved from http://www.staff.science.uu.nl/~heuve108/download/Kolovou-vdHeuvel-Bakker_2009_MJRME_textbook-analysis-problemsolving.pdf

Komorek, M., & Duit, R. (2004). The teaching experiment as a powerful method to develop and evaluate teaching and learning sequences in the domain of non-linear systems. International Journal of Science Education, 26, 619–633.

Kramarski, B. (1999). The Study Of Graphs By Computers: Is Easier Better? Educational Media International, 36(3), 203–209.

Kreijns, K., Kirschner, P., & Jochems, W. (2003). Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: a review of the research. Computers in Human Behavior, 19(3), 335–353.

Kruja, E., Marks, J., Blair, A., & Waters, R. (2002). A Short Note on the History of Graph Drawing. In P. Mutzel, M. Jünger, & S. Leipert (Eds.), Graph Drawing (Vol. 2265, pp. 272–286). Springer Berlin Heidelberg. http://doi.org/10.1007/3-540-45848-4_22

Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The Development of Cognitive Skills To Support Inquiry Learning. Cognition and Instruction, 18(4), 495–523. http://doi.org/10.1207/S1532690XCI1804_3

Kuijpers, J., Noordam, J., & Peters, S. (2009). Wetenschap en techniek in het basisonderwijs in Nederland; ontwikkelingen in vogelvlucht. In H. van Keulen & J. W. van der Molen (Eds.), Onderzoek naar wetenschap en techniek in het Nederlandse basisonderwijs (pp. 17–27). Den Haag: Platform Bèta Techniek.

Kumar, A. (1997). Pitfalls in elementary physics. Resonance, 2(7), 75–81.

Kyza, E. A., Constantinou, C. P., & Spanoudis, G. (2011). Sixth Graders’ Co-construction of Explanations of a Disturbance in an Ecosystem: Exploring relationships between grouping, reflective scaffolding, and evidence-based explanations. International Journal of Science Education, 33(18), 2489–2525. http://doi.org/10.1080/09500693.2010.550951

Lagemann, E. C. (2000). An elusive science. The troubling history of education research. Chicacgo: The university of Chicago press.

Lakoff, G., & JOhnson, M. (2003). Metaphors we live by (2003rd ed.). Chicago: The University of Chicago Press.

Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from. Basic Books.

Lamberg, T., & Middleton, J. (2009). Design research perspectives on transitioning from individual microgenetic interviews to a whole-class teaching experiment. Educational Researcher, 38(4), 233.

Lange, M. (2005). How Can Instantaneous Velocity Fulfill Its Causal Role? The Philosophical Review, 114(4), 433–468.

Lapp, D., & Cyrus, V. (2000). Using data-collection devices to enhance students’ understanding. Mathematics Teacher, 93(6), 504–510. Retrieved from http://calcnet.cst.cmich.edu/faculty/lapp/MT2000.pdf

Latour, B. (1986). Visualisation and Cognition: Drawing Things Together. Retrieved from http://www.bruno-latour.fr/articles/article/21-DRAWING-THINGS-TOGETHER.pdf

Laugksch, R. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71–94. Retrieved from http://ci.unlv.edu/files/Laugksch_Scientific_Literacy.pdf

Laverty, J., & Kortemeyer, G. (2012). Function plot response: A scalable system for teaching kinematics graphs. American Journal of Physics, 80(8), 724–733. http://doi.org/10.1119/1.4719112

Leenaars, F. A. J., Joolingen, W. R. van, & Bollen, L. (2013). Using self-made drawings to support modelling in science education. British Journal of Educational Technology, 44(1), 82–94. http://doi.org/10.1111/j.1467-8535.2011.01272.x

Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy. In K. A. Renninger, I. E. Sigel, W. Damon, & R. M. Lerner (Eds.), Handbook of child psychology (6th ed., Vol. 4, pp. 153–196).

Lehrer, R., & Schauble, L. (2010). What Kind of Explanation is a Model? In M. Stein & L. Kucan (Eds.), Instructional explanations in the disciplines (pp. 9–22). Springer.

Lehrer, R., & Schauble, L. (2012). Seeding evolutionary thinking by engaging children in modeling its foundations. Science Education, 96(4), 701–724. http://doi.org/10.1002/sce.20475

Lehrer, R., Kim, M.-j., & Schauble, L. (2007). Supporting the Development of Conceptions of Statistics by Engaging Students in Measuring and Modeling Variability. International Journal of Computers for Mathematical Learning, 12(3), 195–216. Retrieved from http://dx.doi.org/10.1007/s10758-007-9122-2

Lehtinen, E., Hakkarainen, K., Lipponen, L., Rahikainen, M., & Muukkonen, H. (1999). Computer supported collaborative learning: A review (Vol. 10). University of Nijmegen Nijmegen.

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, Graphs, and Graphing: Tasks, Learning, and Teaching. Review of Educational Research, 60(1), 1–64.

Lemke, J. L. (2002). Mathematics in the middle: Measure, picture, gesture, sign, and word. In M. Anderson, A. Saenz-Ludlow, & S. abd C. V. Zellweger (Eds.), Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing (pp. 215–234). Retrieved from http://www.jaylemke.com/storage/Math-in-the-Middle-2002.pdf

Lerman, S. (1996). Intersubjectivity in Mathematics Learning: A Challenge to the Radical Constructivist Paradigm? Journal for Research in Mathematics Education, 27(2), pp. 133–150. Retrieved from http://www.jstor.org/stable/749597

Lerman, S. (2000). A Case of Interpretations of Social: A Response to Steffe and Thompson. Journal for Research in Mathematics Education, 31(2), pp. 210–227. Retrieved from http://www.jstor.org/stable/749752

Lesh, R., & Caylor, B. (2007). Introduction to the Special Issue: Modeling as Application versus Modeling as a Way to Create Mathematics. International Journal of Computers for Mathematical Learning, 12(3), 173–194. Retrieved from http://dx.doi.org/10.1007/s10758-007-9121-3

Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2-3), 157–189.

Lesh, R., & Kelly, A. (2000). Multitiered teaching experiments. In A. kelly & R. Lesh (Eds.), Research Design in Mathematics and Science Education (pp. 197–230). Mahwah: Lawrence Erlbaum Associates. Retrieved from http://www.cehd.umn.edu/rationalnumberproject/00_1.html

Lesh, R., & Sriraman, B. (2010). Re-conceptualizing Mathematics Education as a Design Science. Theories of Mathematics Education, 123–146.

Lesh, R., English, L., Sevis, S., & Riggs, C. (2013). Modeling as a Means for Making Powerful Ideas Accessible to Children at an Early Age. In S. J. Hegedus & J. Roschelle (Eds.), The SimCalc Vision and Contributions (pp. 419–436). Springer Netherlands. http://doi.org/10.1007/978-94-007-5696-0_23

Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for Developing Thought-Revealing Activities for Students and Teachers. In A. Kelly & R. Lesh (Eds.), Research Design in Mathematics and Science Education (pp. 591–646). Mahwah, New Jersey: Lawrence Erlbaum Associates. Retrieved from http://www.cehd.umn.edu/rationalnumberproject/00_2.html

Lesh, R., Post, T., & Behr, M. (1987). Representations and ttranslation among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33–40).

Lester, F. K. J. (2010). On the theoretical, conceptual, and philosophical foundations for research in mathematics education. Advances in Mathematics Education, 67–85.

Léna, P. (2006). Erasmus Lecture 2005 From science to education: the need for a revolution. European Review, 14(01), 3–21. http://doi.org/10.1017/S1062798706000020

Lijnse, P. (2008). Modellen van/voor leren modelleren. Tijdschrift Voor Didactiek Der ß-Wetenschappen, 25(1), 3–24. Retrieved from http://www.fisme.science.uu.nl/tdb/fulltext/lijnse_2008.pdf

Lijnse, P. (n.d.). ‘Developmental research’as a way to an empirically based ‘didactical structure’of science1. In K. Kortland & K. Klaassen (Eds.), Designing Theory-Based Teaching-Learning Sequences for Science Education (pp. 91–101).

Lipsey, M. (1993). Theory as method: Small theories of treatments. New Directions for Program Evaluation, 1993(57), 5–38.

Lobato, J. (2003). How design experiments can inform a rethinking of transfer and vice versa. Educational Researcher, 32(1), 17–20. Retrieved from http://aera.net/uploadedFiles/Journals_and_Publications/Journals/Educational_Researcher/3201/3201_Loboto.pdf

Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. The Journal of Mathematical Behavior, 21(1), 87–116. http://doi.org/10.1016/S0732-3123(02)00105-0

Loewenberg Ball, D., Thames, M. H., & Phelps, G. (2008). Content Knowledge for Teaching: What Makes It Special? Journal of Teacher Education, 59(5), 389–407. http://doi.org/10.1177/0022487108324554

Loh, B., Reiser, B., Radinsky, J., Edelson, D., Gomez, L., & Marshall, S. (2001). Developing reflective inquiry practices: A case study of software, the teacher, and students. In K. Crowley, C. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 279–323).

Lou, Y., Abrami, P., Spence, J., Poulsen, C., Chambers, B., & d’Apollonia, S. (1996). Within-class grouping: A meta-analysis. Review of Educational Research, 66(4), 423–458.

Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471–492.

Lourenço, O. (2012). Piaget and Vygotsky: Many resemblances, and a crucial difference. New Ideas in Psychology, 30(3), 281–295. http://doi.org/10.1016/j.newideapsych.2011.12.006

Lowe, R. (2004). Interrogation of a dynamic visualization during learning. Learning and Instruction, 14(3), 257–274.

Lowe, R. (2006). Changing Perceptions of Animated Diagrams. In D. Barker-Plummer, R. Cox, & N. Swoboda (Eds.), Diagrammatic Representation and Inference (Vol. 4045, pp. 168–172). Springer Berlin Heidelberg. http://doi.org/10.1007/11783183_22

Lowrie, T., & Diezmann, C. M. (2007). Middle school students’ interpreting graphical tasks: Difficulties within a graphical language. In 4th East Asia Regional Conference on Mathematics Education. Penang, Malaysia. Retrieved from http://eprints.qut.edu.au/10491/

MacKay, D. M. (1955). Operational aspects of some fundamental concepts of human communication. Synthese, 9(1), 182–198.

Marsden, E. (2007). Can educational experiments both test a theory and inform practice? British Educational Research Journal, 33(4), 565–588. Retrieved from http://www.restore.ac.uk/trials-pp/Can%20Educational%20Experiments%20both%20Test%20a%20Theory%20and%20Inform%20Practice.pdf

Marshall, J. A., & Carrejo, D. J. (2008). Students’ mathematical modeling of motion. Journal of Research in Science Teaching, 45(2), 153–173.

Mason, J. (1992). Doing and construing mathematics in screenspace. In Proceedings of the 15th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 1–17). Retrieved from http://www.merga.net.au/documents/Keynote_Mason_1992.pdf

Mason, J., & Waywood, A. (1996). The role of theory in mathematics education and research. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (pp. 1055–1089). Kluwer Academic Publishers.

Mawson, B. (2007). Factors affecting learning in technology in the early years at school. International Journal for Technology Education, 17, 253–269. Retrieved from http://www.springerlink.com/content/67846707003j68v2/fulltext.pdf

Maxwell, J. (2004). Causal explanation, qualitative research, and scientific inquiry in education. Educational Researcher, 33(2), 3–11. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.4297&rep=rep1&type=pdf

Mayer, R. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32(1), 1–19. Retrieved from http://www.uky.edu/~gmswan3/609/mayer_1997.pdf

Mayer, R. E. (2004). Should There Be a Three-Strikes Rule Against Pure Discovery Learning? American Psychologist, 59(1), 14–19. Retrieved from http://search.proquest.com/docview/614385379?accountid=27128

Mayer, R. E., & Moreno, R. (2002). Animation as an aid to multimedia learning. Educational Psychology Review, 14(1), 87–99.

Mayes, R., Bonilla, R., & Peterson, F. (2012). Quantitative reasoning in context. In R. Mayes, R. Bonillia, L. L. Hatfield, & S. Belbase (Eds.), Quantitative reasoning and Mathematical Modeling: A Driver for STEM Integrated Education and Teaching in Context (pp. 7–38). Retrieved from http://www.uwyo.edu/wisdome/_files/documents/qrincontext_mayespeterson.pdf

Määttä, E., Järvenoja, H., & Järvelä, S. (2012). Triggers of Students’ Efficacious Interaction in Collaborative Learning Situations. Small Group Research, 43(4), 497–522.

McCandliss, B., Kalchman, M., & Bryant, P. (2003). Design experiments and laboratory approaches to learning: Steps toward collaborative exchange. Educational Researcher, 32(1), 14–16. Retrieved from http://www.sacklerinstitute.org/cornell/people/bruce.mccandliss/publications/publications/McCandliss.etal.2003.EdRes.pdf

McCloskey, M. (1983). Intuitive physics. Scientific American, 248(4), 114–122. Retrieved from http://homepage.psy.utexas.edu/homepage/faculty/Markman/PSY394/McCloskey_IntuitivePhysics.pdf

McCoy, A. C., Barger, R. H., Barnett, J., & Combs, E. (2012). Functions and the Volume of Vases. Mathematics Teaching in the Middle School, 17(9), 530–536.

McDermott, L., Rosenquist, M., & Zee, E. (1987). Student difficulties in connecting graphs and physics: Exampies from kinematics. American Journal of Physics, 55, 503–513. Retrieved from http://www.colorado.edu/physics/phys4810/phys4810_fa08/refs/McDermott2c.pdf

McGowen, M., & Tall, D. (2010). Metaphor or Met-Before? The effects of previouos experience on practice and theory of learning mathematics. The Journal of Mathematical Behavior, 29(3), 169–179. Retrieved from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2010b-met-before-mcgowen.pdf

McNeill, W. (1998). History and the scientific worldview. History and Theory, 37(1), 1–13. Retrieved from http://www.historyandtheory.org/archives/feb98.html

Meij, J. van der, & Jong, T. de. (2006). Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16(3), 199–212. http://doi.org/10.1016/j.learninstruc.2006.03.007

Meira, L. (1998). Making Sense of Instructional Devices: The Emergence of Transparency in Mathematical Activity. Journal for Research in Mathematics Education, 29(2), pp. 121–142. Retrieved from http://www.jstor.org/stable/749895

Mercer, N., Dawes, L., Wegerif, R., & Sams, C. (2004). Reasoning as a scientist: ways of helping children to use language to learn science. British Educational Research Journal, 30(3), 359–377. http://doi.org/10.1080/01411920410001689689

Mercer, N., Dawes, L., Wegerif, R., Sams, C., & Fernandez, M. (2007). Computers, literacy and thinking together. In Teaching Secondary English with ICT (p. 1). Open University Press.

Mercer, N., Wegerif, R., & Dawes, L. (1999). Children’s Talk and the Development of Reasoning in the Classroom. British Educational Research Journal, 25(1), 95–111. http://doi.org/10.1080/0141192990250107

Merriënboer, J. van, & Kirschner, P. (2001). Three worlds of instructional design: State of the art and future directions. Instructional Science, 29(4), 429–441.

Merton, R. (1945). Sociological Theory. American Journal of Sociology, 50(6), pp. 462–473. Retrieved from http://www.jstor.org/stable/2771390

Merton, R. (1968). Social theory and social structure (1968 Enlarged edition). New York: The Free Press.

Meter, P., & Garner, J. (2005). The Promise and Practice of Learner-Generated Drawing: Literature Review and Synthesis. Educational Psychology Review, 17(4), 285–325. http://doi.org/10.1007/s10648-005-8136-3

Mevarech, Z. R., & Kramarsky, B. (1997). From verbal descriptions to graphic representations: Stability and change in students’ alternative conceptions. Educational Studies in Mathematics, 32(3), 229–263. http://doi.org/10.1023/A:1002965907987

Meyer, J., & Land, R. (2003). Threshold Concepts and Troublesome Knowledge – Linkages to Ways of Thinking and Practising. In C. Rust (Ed.), Improving Student Learning – Ten Years On.

Meyer, U. (2003). The metaphysics of velocity. Philosophical Studies, 112(1), 93–102.

Millar, R., & Osborne, J. (Eds.). (1998). Beyond 2000: Science education for the future. London: Nuffield Foundation; King’s College London. Retrieved from http://www.nuffieldfoundation.org/fileLibrary/pdf/Beyond_2000.pdf

Mioduser, D., Nachmias, R., & Forkosh-Baruch, A. (2008). New literacies for the knowledge society. In International handbook of information technology in primary and secondary education (pp. 23–42). Springer.

Molen, J. W. van der, Lange, J. de, & Kok, J. (2009). Theoretische uitgangspunten bij de professionalisering van leraren basisonderwijs op het gebied van wetenschap en techniek. In H. van Keulen & J. W. van der Molen (Eds.), Onderzoek naar wetenschap en techniek in het Nederlandse basisonderwijs (pp. 29–39). Den Haag: Platform Bèta Techniek.

Molenaar, I., Chiu, M., Sleegers, P., & Boxtel, C. van. (2011). Scaffolding of small groups’ metacognitive activities with an avatar. International Journal of Computer-Supported Collaborative Learning, 1–24.

Molnar, A. (1997). Computers in education: A brief history. June, 25. Retrieved from http://thejournal.com/articles/1997/06/01/computers-in-education-a-brief-history.aspx

Monteiro, C., & Ainley, J. (2010). The interpretation of graphs: reflecting on concontext aspects. Alexandria Revista de Educação Em Ciência E Tecnologia, 17–30.

Moreno-Armella, L., & Hegedus, S. (2013). From Static to Dynamic Mathematics: Historical and Representational Perspectives. In S. J. Hegedus & J. Roschelle (Eds.), The SimCalc Vision and Contributions (pp. 27–45). Springer Netherlands. http://doi.org/10.1007/978-94-007-5696-0_3

Moritz, J. (2004). Reasoning about covariation. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 227–255). Springer. Retrieved from http://bib.tiera.ru/dvd53/Ben-Zvi%20D.%20-%20The%20Challenge%20of%20Developing%20Statistical%20Literacy,%20Reasoning%20and%20Thinking(2004)(440).pdf#page=233

Morris, A., & Hiebert, J. (2011). Creating Shared Instructional Products. Educational Researcher, 40(1), 5.

Morris, B. J., Croker, S., Zimmerman, C., & Amy M. Masnick. (2012). The Emergence of Scientific Reasoning. In H. Kloos, B. J. Morris, & J. L. Amaral (Eds.), Current Topics in Children’s Learning and Cognition. http://doi.org/10.5772/53885

Mortensen, C. (2008). Change. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2008). Retrieved from http://plato.stanford.edu/archives/fall2008/entries/change/

Mottier, V. (2005). The interpretive turn: history, memory, and storage in qualitative research. Forum: Qualitative Sozialforschung, 6(2). Retrieved from http://www.qualitative-research.net/index.php/fqs/article/view/456/973

Moxley, R. (1983). Educational diagrams. Instructional Science, 12(2), 147–160. http://doi.org/10.1007/BF00122454

Murphy, C. (2003). Literature review in primary science and ICT. Retrieved from http://www2.futurelab.org.uk/resources/documents/lit_reviews/Primary_Science_Review.pdf

Narayanan, N., & Hegarty, M. (2000). Communicating Dynamic Behaviors: Are Interactive Multimedia Presentations Better than Static Mixed-Mode Presentations? In Theory and Application of Diagrams (pp. 257–288). New York: Springer. Retrieved from http://www.psych.ucsb.edu/~hegarty/papers/17-Communicating%20dynamic%20behaviors.pdf

Nardi, E. (2014). Reflections on Visualization in Mathematics and in Mathematics Education. In M. N. Fried & T. Dreyfus (Eds.), Mathematics & Mathematics Education: Searching for Common Ground (pp. 193–220). Springer Netherlands. http://doi.org/10.1007/978-94-007-7473-5_12

Nathan, M., & Wagner Alibali, M. (2010). Learning sciences. Wiley Interdisciplinary Reviews: Cognitive Science, 1(3), 329–345.

Nemirovsky, R. (1993). Children, Additive Change, and Calculus. TERC Communications, 2067 Massachusetts Ave., Cambridge, MA 02140. Retrieved from http://eric.ed.gov/PDFS/ED365536.pdf

Nemirovsky, R. (1994). On Ways of Symbolizing: The Case of Laura and the Velocity Sign. Journal of Mathematical Behaviour, 13, 389–422.

Nemirovsky, R., & Tierney, C. (2001). Children creating ways to represent changing situations: On the development of homogeneous spaces. Educational Studies in Mathematics, 45(1), 67–102.

Nemirovsky, R., Tierney, C., & Wright, T. (1998). Body motion and graphing. Cognition and Instruction, 16(2), 119–172.

Newcombe, N. S., & Stieff, M. (2011). Six Myths About Spatial Thinking. International Journal of Science Education, (0), 1–17. http://doi.org/10.1080/09500693.2011.588728

Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576. http://doi.org/10.1080/095006999290570

Nixon, E. (2009). Creating and learning abstract algebra: Historical phases and conceptual levels (PhD thesis). Retrieved from http://uir.unisa.ac.za/handle/10500/1134

Noble, T., Nemirovsky, R., Dimattia, C., & Wright, T. (2004). Learning to see: Making sense of the mathematics of change in middle school. International Journal of Computers for Mathematical Learning, 9(2), 109–167.

Noble, T., Nemirovsky, R., Wright, T., & Tierney, C. (2001). Experiencing Change: The Mathematics of Change in Multiple Environments. Journal for Research in Mathematics Education, 32(1), pp. 85–108. Retrieved from http://www.jstor.org/stable/749622

Noss, R. (2012). 21st Century Learning for 21st Century Skills: What Does It Mean, and How Do We Do It? In A. Ravenscroft, S. Lindstaedt, C. Kloos, & D. Hernández-Leo (Eds.), 21st Century Learning for 21st Century Skills (Vol. 7563, pp. 3–5). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-33263-0_1

Noss, R., Healy, L., & Hoyles, C. (1997). The Construction of Mathematical Meanings: Connecting the Visual with the Symbolic. Educational Studies in Mathematics, 33(2), pp. 203–233. Retrieved from http://www.jstor.org/stable/3482643

Notari-Syverson, A., & Sadler, F. (2008). Math is for everyone: Strategies for supporting early mathematical competencies in young children. Young Exceptional Children, 11(3), 2.

Nowicki, B., Sullivan-Watts, B., Shim, M., Young, B., & Pockalny, R. (2013). Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons. Research in Science Education, 43(3), 1135–1154. http://doi.org/10.1007/s11165-012-9303-4

Nunes, T., Light, P., & Mason, J. (1993). Tools for thought: the measurement of length and area. Learning and Instruction, 3(1), 39–54. http://doi.org/10.1016/S0959-4752(09)80004-2

Nussbaum, M., Alvarez, C., McFarlane, A., Gomez, F., Claro, S., & Radovic, D. (2009). Technology as small group face-to-face Collaborative Scaffolding. Computers & Education, 52(1), 147–153.

Orhun, E. (1995). Design of computer-based cognitive tools. In A. A. diSessa, C. Hoyles, R. Noss, & L. D. Edwards (Eds.), Computers and Exploratory Learning (pp. 305–319). Springer.

Orilia, F. (2011). Dynamic events and presentism. Philosophical Studies, 1–8. Retrieved from http://docenti.unimc.it/docenti/francesco-orilia/preprint_events_and_presentism_april_1_2011_-_copia.pdf

Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. Retrieved from http://www.pollen-europa.net/pollen_dev/Images_Editor/Nuffield%20report.pdf

Osborne, J., & Hennessy, S. (2003). Literature review in science education and the role of ICT: Promise, problems and future directions. Retrieved from http://www2.futurelab.org.uk/resources/documents/lit_reviews/Secondary_Science_Review.pdf

Osborne, J., Erduran, S., Simon, S., & Monk, M. (2001). Enhancing the quality of argument in school science. School Science Review, 82(301), 63–70. Retrieved from https://ase.org.uk/journals/school-science-review/2001/06/301/1318/SSR301Jun2001p63.pdf

Özdemir, G., & Clark, D. B. (2007). An Overview of Conceptual Change Theories. Eurasia Journal of Mathematics, Science & Technology Education, 3(4), 351–361. Retrieved from http://www.ejmste.com/v3n4/EURASIA\_v3n4.pdf#page=106

Palincsar, A., & Herrenkohl, L. (2002). Designing collaborative learning contexts. Theory into Practice, 41(1), 26–32.

Papadopoulos, I., & Dagdilelis, V. (2009). ICT in the Classroom Microworld-Some Reservations. Best Practices for the Knowledge Society. Knowledge, Learning, Development and Technology for All, 137–145.

Papert, S. (1991). Perestroika and epistemological politics. In I. Harel & S. Papert (Eds.), Constructionism (pp. 13–28).

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism (pp. 1–11). Retrieved from http://www.papert.org/articles/SituatingConstructionism.html

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic Books.

Papert, S. (1993). The children’s machine. Technology Review, 96(5), 28–36.

Park, S. I., Lee, G., & Kim, M. (2009). Do students benefit equally from interactive computer simulations regardless of prior knowledge levels? Computers &Amp; Education, 52(3), 649–655. http://doi.org/10.1016/j.compedu.2008.11.014

Parnafes, O. (2007). What Does" Fast" Mean? Understanding the Physical World Through Computational Representations. The Journal of the Learning Sciences, 76(3), 415–450. Retrieved from http://131.193.130.213/media//Parnafes_JLS2007.pdf

Parnafes, O., & Disessa, A. (2004). Relations between Types of Reasoning and Computational Representations. International Journal of Computers for Mathematical Learning, 9(3), 251–280. Retrieved from http://dx.doi.org/10.1007/s10758-004-3794-7

Pedró, F. (2006). The New Millennium Learners: Challenging our Views on ICT and Learning (IDB Publications No. 9228). Inter-American Development Bank. Retrieved from http://ideas.repec.org/p/idb/brikps/9228.html

Peirce, C. (1970). Collected Papers of Chales Sanders Peirce. Retrieved from http://www.dca.fee.unicamp.br/~gudwin/ftp/ia005/Peirce%20Theory%20of%20Abduction.pdf

Pelgrum, W., & Plomp, T. (1993). The worldwide use of computers: a description of main trends. Computers & Education, 20(4), 323–332.

Penner, D. (2000). Cognition, computers, and synthetic science: Building knowledge and meaning through modeling. Review of Research in Education, 25, 1–35.

Perkins, D. (1993). Person-plus: A distributed view of thinking and learning. In G. Salomon (Ed.), Distributed cognitions: Psychological and educational considerations (pp. 88–110).

Perkins, D. (1999). The many faces. Educational Leadership: Associations for Supervision and Curriculum Development, Nov, 6–11. Retrieved from http://moodle.urbandale.k12.ia.us/file.php/2324/Construction_of_Learning_Resources/The_Many_Faces_of_Constructivism.pdf

Perkins, D. (2006). Constructivism and troublesome knowledge. In J. H. Meyer & R. Land (Eds.), Overcoming barriers to student understanding: Threshold concepts and troublesome knowledge (pp. 33–47). Routledge London.

Phillips, D. (1995). The good, the bad, and the ugly: The many faces of constructivism. Educational Researcher, 5–12.

Phillips, D. C., & Dolle, J. R. (2006). From Plato to Brown and beyond: Theory, practice, and the promise of design experiments. In L. Verschaffel, F. Dochy, M. Boekaerts, & S. Vosniadou (Eds.), Instructional psychology: Past, present and future trends. Sixteen essays in honour of Erik De Corte (pp. 277–292). Elsevier. Retrieved from http://ir.nmu.org.ua/bitstream/handle/123456789/122437/bccd9b1e7ec0083c775a0f8eec5cdaab.pdf?sequence=1&isAllowed=y#page=310

Phillips, R. (1997). Can juniors read graphs? A review and analysis of some computer-based activities. Technology, Pedagogy and Education, 6(1), 49–58.

Piaget, J. (1970). The Child’s Conception of Movement and Speed. New York: Ballantine Books.

Piaget, J. (2000). Commentary on Vygotsky’s criticisms of Language and thought of the child and Judgement and reasoning in the child. New Ideas in Psychology, 18(2–3), 241–259. http://doi.org/10.1016/S0732-118X(00)00012-X

Piaget, J., Grize, J., Szeminska, A., & Bang, V. (1977). Epistemology and psychology of functions (Vol. 83). D. Reidel Publishing Company.

Pierce, R., & Stacey, K. (2010). Mapping Pedagogical Opportunities Provided by Mathematics Analysis Software. International Journal of Computers for Mathematical Learning, 15(1), 1–20. http://doi.org/10.1007/s10758-010-9158-6

Pijls, M., & Dekker, R. (2011). Students discussing their mathematical ideas: the role of the teacher. Mathematics Education Research Journal, 23(4), 379–396. http://doi.org/10.1007/s13394-011-0022-3

Pitta-Pantazi, D., Sophocleous, P., & Christou, C. (2013). Developing and Enhancing Elementary School Students’ Higher Order Mathematical Thinking with SimCalc. In S. J. Hegedus & J. Roschelle (Eds.), The SimCalc Vision and Contributions (pp. 319–340). Springer Netherlands. http://doi.org/10.1007/978-94-007-5696-0_18

Ploetzner, R., Lippitsch, S., Galmbacher, M., Heuer, D., & Scherrer, S. (2009). Students’ difficulties in learning from dynamic visualisations and how they may be overcome. Computers in Human Behavior, 25(1), 56–65. http://doi.org/10.1016/j.chb.2008.06.006

Plomp, T. (2013). Educational Design Research: An introduction. In T. Plomp & N. Nieveen (Eds.), Educational Design Research (Vol. A, pp. 11–50). SLO. Retrieved from http://international.slo.nl/edr/

Plomp, T., & Pelgrum, W. (1991). Introduction of computers in education: State of the art in eight countries. Computers & Education, 17(3), 249–258.

Pluspunt groep 6 en groep 7. (n.d.). Malmberg.

Ponterotto, J. (2006). Brief note on the origins, evolution, and meaning of the qualitative research concept “thick description.”. The Qualitative Report, 11(3), 538–549. Retrieved from http://www.nova.edu/ssss/QR/QR11-3/ponterotto.pdf

Prain, V., & Tytler, R. (2012). Learning Through Constructing Representations in Science: A framework of representational construction affordances. International Journal of Science Education, 34(17), 2751–2773. http://doi.org/10.1080/09500693.2011.626462

Pratt, D. (1995). Young children’s active and passive graphing. Journal of Computer Assisted Learning, 11(3), 157–169. http://doi.org/10.1111/j.1365-2729.1995.tb00130.x

Preece, J. (1983). Graphs are not straightforward. In T. Green, S. Payne, & G. van der Veer (Eds.), The psychology of computer use (pp. 41–56). Academic press.

Prensky, M. (2001). Digital natives, digital immigrants Part 1. On the Horizon, 9(5), 1–6. Retrieved from http://www.marcprensky.com/writing/prensky%20-%20digital%20natives,%20digital%20immigrants%20-%20part1.pdf

Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. Handbook of Research on the Psychology of Mathematics Education: Past, Present and Future, 205–235. Retrieved from http://www.kaputcenter.umassd.edu/downloads/symcog/bib/pmeVisualizationFinalAPA.pdf

Presmeg, N. (2008). Spatial abilities research as a foundation for visualization in teaching and learning mathematics. Critical Issues in Mathematics Education, 83–95.

Putnam, H. (1991). Representation and reality. The MIT Press.

Quintana, C., Reiser, B. J., Davis, E., Krajcik, J., Fretz, E., Duncan, R. G., … Soloway, E. (2004). A Scaffolding Design Framework for Software to Support Science Inquiry. Journal of the Learning Sciences, 13(3), 337–386. http://doi.org/10.1207/s15327809jls1303_4

Radford, L., Bardini, C., Sabena, C., Diallo, P., & Simbagoye, A. (2005). On embodiment, artifacts, and signs: A semiotic-cultural perspective on mathematical thinking. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (pp. 113–120).

Rasmussen, C., & Marrongelle, K. (2006). Pedagogical Content Tools: Integrating Student Reasoning and Mathematics in Instruction. Journal for Research in Mathematics Education, 37(5), 388–420. Retrieved from http://www.jstor.org/stable/30034860

Ray, T. (1994). An evolutionary approach to synthetic biology. Artificial Life, 1(1/2), 179–209.

Reeves, T. (2011). Can Educational Research Be Both Rigorous and Relevant? Educational Designer, 1(4). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue4/article13

Reeves, T., McKenney, S., & Herrington, J. (2010). Publishing and perishing: The critical importance of educational design research. In Proceedings ascilite Sydney 2010 (pp. 787–794).

Reimann, P. (2009). Time is precious: Variable-and event-centred approaches to process analysis in CSCL research. International Journal of Computer-Supported Collaborative Learning, 4(3), 239–257.

Reimann, P. (2011). Design-Based Research. In L. Markauskaite, P. Freebody, & J. Irwin (Eds.), Methodological Choice and Design (Vol. 9, pp. 37–50). Springer Netherlands.

Reiser, B. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13(3), 273–304.

Repenning, A., Ioannidou, A., & Phillips, J. (1999). Collaborative use & design of interactive simulations. In Proceedings of the 1999 conference on Computer support for collaborative learning. Palo Alto, California: International Society of the Learning Sciences. Retrieved from http://dl.acm.org/citation.cfm?id=1150240.1150299

Resnick, M. (1991). Xylophones, hamsters, and fireworks: the role of diversity in constructionist activities. In I. Harel & S. Papert (Eds.), Constructionism (pp. 151–158).

Resnick, M., & Ocko, S. (1991). LEGO/Logo. In I. Harel & S. Papert (Eds.), Constructionism (pp. 141–150).

Ritchie, S. M. (2001). Actions and discourses for transformative understanding in a middle school science class. International Journal of Science Education, 23(3), 283–299. http://doi.org/10.1080/095006901750066529

Roberts, R. (1989). Serendipity: accidental discoveries in science. John Wiley & Sons, Inc.

Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Valerie-Hemmo. (2007). Science education now: A renewed pedagogy for the future of Europe. Brussels: European Commission. Retrieved from http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf

Rogers, Y., Scaife, M., Aldrich, F., & Price, S. (2003). Improving Children’s Understanding of Formalisms Through Interacting with Multimedia. In COGNITIVE SCIENCE RESEARCH PAPER-UNIVERSITY OF SUSSEX CSRP.

Rojas-Drummond, S., & Mercer, N. (2003). Scaffolding the development of effective collaboration and learning. International Journal of Educational Research, 39(1–2), 99–111. http://doi.org/10.1016/S0883-0355(03)00075-2

Roorda, G. (2012). Ontwikkeling in verandering: Ontwikkeling van wiskundige bekwaamheid van leerlingen met betrekking tot het concept afgeleide (PhD thesis). Rijksuniversiteit Groningen. Retrieved from http://www.rug.nl/staff/g.roorda/proefschriftGerritRoorda.pdf

Roschelle, J., Kaput, J., & Stroup, W. (2000). SIMCALC: Accelerating Students’ Engagement With the Mathematics of Change. Innovations in Science and Mathematics Education: Advanced Designs for Technologies of Learning, 47–75. Retrieved from http://ctl.sri.com/publications/downloads/SimCalc_accel_preprint.pdf

Rosé, C., Wang, Y., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., & Fischer, F. (2008). Analyzing collaborative learning processes automatically: Exploiting the advances of computational linguistics in computer-supported collaborative learning. International Journal of Computer-Supported Collaborative Learning, 3(3), 237–271.

Ross, S. M., Morrison, G. R., Hannafin, R. D., Young, M., Akker, J. van den, Kuiper, W., … Klein, J. D. (2007). Research designs. In J. M. Spector, M. D. Merrill, J. V. Merrienboer, & M. P. Driscoll (Eds.), Handbook of Research for Educational Communications and Technology (7th ed., pp. 715–761).

Roth, M., & Eijck, M. (2010). Fullness of life as minimal unit: Science, technology, engineering, and mathematics (STEM) learning across the life span. Science Education. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/sce.20401/full

Roth, W. (2002). Reading graphs: Contributions to an integrative concept of literacy. Journal of Curriculum Studies, 34(1), 1–24.

Roth, W., & Lee, Y. (2004). Interpreting unfamiliar graphs: A generative, activity theoretic model. Educational Studies in Mathematics, 57(2), 265–290.

Roth, W., & McGinn, M. (1997). Graphing: Cognitive ability or practice? Science Education, 81(1), 91–106.

Roth, W., Bowen, G. M., & McGinn, M. K. (1999). Differences in Graph-Related Practices between High School Biology Textbooks and Scientific Ecology Journals. Journal of Research in Science Teaching, 36(9), 977–1019.

Roth, W., Bowen, G., & Masciotra, D. (2002). From thing to sign and “natural object”: Toward a genetic phenomenology of graph interpretation. Science, Technology & Human Values, 27(3), 327.

Rotherham, A., & Willingham, D. (2010). “21st-Century” Skills: Not New, but a Worthy Challenge. American Educator, 34(1), 17–20.

Ruddock, G., & Sainsbury, M. (2008). Comparison of the core primary curriculum in England to those of other high performing countries. National Foundation for Educational Research; Department for Children, Schools; Families. Retrieved from http://files.eric.ed.gov/fulltext/ED502359.pdf

Ryan, J., & Williams, J. (2007). Children’s Mathematics 4-15: Learning From Errors And Misconceptions: Learning from Errors and Misconceptions. McGraw-Hill International.

Saab, N., Joolingen, W. van, & Hout-Wolters, B. van. (2007). Supporting communication in a collaborative discovery learning environment: The effect of instruction. Instructional Science, 35(1), 73–98.

Sabelli, N. (2006). Complexity, technology, science, and education. Journal of the Learning Sciences, 15(1), 5.

Saldanha, L., & Thompson, P. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous continuous variation. In S. Berensen, K. Dawkins, M. Blanton, W. Coulombe, J. Kolb, K. Norwood, & L. Stiff (Eds.), Proceedings of the Annual Meeting of the Psychology of Mathematics Education North America. Raleigh, NC (pp. 298–303). Columbus: ERIC Clearinghouse for Science, Mathematics,; Environmental Education. Retrieved from http://pat-thompson.net/PDFversions/1998SimulConVar.pdf

Savelsbergh, E., Drijvers, P., Giessen, C. van de, Heck, A., Hooyman, K., Kruger, J., … Westra, R. (2008). Modelleren en computermodellen in de ß-vakken. Advies aan de gezamenlijke ß-vernieuwingscommissie. afstemmingsgroep modelleren. Retrieved from http://www.nieuwenatuurkunde.nl/download/id/40/Modelleren_betavakken.pdf

Sawyer, R. K. (2011). A call to action: The challenges of creative teaching and learning. Teachers College Record, 7. Retrieved from http://www.artsci.wustl.edu/~ksawyer/PDFs/TCR.pdf

Scaife, J. (1993). Datalogging: where are we now? Physics Education, 28, 83. Retrieved from http://iopscience.iop.org/0031-9120/28/2/003/pdf/0031-9120_28_2_003.pdf

Scaife, M., & Rogers, Y. (1996). External cognition: how do graphical representations work? Int. J. Human–Computer Studies, 45, 185–213.

Schefe, P. (1993). Computationalism reconsidered connectionism and the use of computer science concepts in explanations of the mind. Retrieved from http://epub.sub.uni-hamburg.de/informatik/volltexte/2010/138/pdf/B_166_93.pdf

Schemmel, M. (2010). Medieval representations of change and their early Modern application. Retrieved from http://wwwneu.mpiwg-berlin.mpg.de/Preprints/P402.PDF

Schliemann, A., Carraher, D., Brizuela, B., Earnest, D., Goodrow, A., Lara-Roth, S., & Peled, I. (2003). Algebra in Elementary School. International Group for the Psychology of Mathematics Education, 8. Retrieved from http://www.earlyalgebra.terc.edu/our_papers/2003/schlieman_etall_pme2003.pdf

Schnotz, W. (2002). Enabling, facilitating, and inhibiting effects in learning from animated pictures. In International Workshop on Dynamic Visualizations and Learning, Tubingen, Germany.

Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141–156.

Schnotz, W., & Rasch, T. (2005). Enabling, facilitating, and inhibiting effects of animations in multimedia learning: Why reduction of cognitive load can have negative results on learning. Educational Technology Research and Development, 53(3), 47–58. http://doi.org/10.1007/BF02504797

Schoenfeld, A. (2009). Bridging the cultures of educational research and design. Educational Designer, 1(2). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue2/article5

Schoor, C., & Bannert, M. (2012). Exploring regulatory processes during a computer-supported collaborative learning task using process mining. Computers in Human Behavior.

Schubring, G. (2007). Der Aufbruch zum funktionalen Denken“: Geschichte des Mathematikunterrichts im Kaiserreich. NTM International Journal of History and Ethics of Natural Sciences, Technology and Medicine, 15(1), 1–17. http://doi.org/10.1007/s00048-006-0260-8

Schunn, C. (2008). Engineering Educational Design. Educational Designer, 1(1). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue1/article2

Schwarz, B., & Hershkowitz, R. (1999). Prototypes: Brakes or levers in learning the function concept? The role of computer tools. Journal for Research in Mathematics Education, 30(4), 362–389.

Schwarz, C. (2009). Developing preservice elementary teachers’ knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), 720–744.

Schwarz, C. V., Reiser, B. J., Davis, E., Kenyon, L., Achér, A., Fortus, D., … Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. http://doi.org/10.1002/tea.20311

Schwarz, C., & White, B. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205. Retrieved from http://www.cuip.net/~cac/nlu/tie512win10/articles/Metamodeling%20Knowledge.pdf

ScienceGuide. (2008). Techniek in PO: veel werk aan de winkel. ScienceGuide. Retrieved from http://www.scienceguide.nl/200809/techniek-in-po-veel-werk-aan-de-winkel.aspx

Segall, R. G. (1991). A multimedia research tool for ethnographic investigations. In I. Harel & S. Papert (Eds.), Constructionism (pp. 467–497).

Selwyn, N. (2003). Why students do (and do not) make use of ICT in university. Retrieved from http://www.leeds.ac.uk/educol/documents/00003130.htm

Selwyn, N. (2009). The digital native–myth and reality, 61(4), 364–379. Retrieved from https://comminfo.rutgers.edu/~tefko/Courses/Zadar/Readings/Selwyn%20dig%20natives,%20Aslib%20Proceedings%202009.pdf

Sengupta, P., & Farris, A. V. (2012). Learning kinematics in elementary grades using agent-based computational modeling: a visual programming-based approach. In Proceedings of the 11th International Conference on Interaction Design and Children (pp. 78–87). New York, NY, USA: ACM. http://doi.org/10.1145/2307096.2307106

Sengupta, P., Farris, A., & Wright, M. (2012). From Agents to Continuous Change via Aesthetics: Learning Mechanics with Visual Agent-based Computational Modeling. Technology, Knowledge and Learning, 1–20.

Seufert, T., & Brünken, R. (2004). Supporting coherence formation in multimedia learning. In Instructional design for effective and enjoyable computer-supported learning. Proceedings of the first joint meeting of the EARLI SIGs Instructional Design and Learning and Instruction with Computers (pp. 138–147).

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36.

Sfard, A. (1994). Reification as the birth of metaphor. For the Learning of Mathematics, 14(1), 44–55.

Sfard, A., & Leron, U. (1996). Just give me a computer and i will move the earth: Programming as a catalyst of a cultural revolution in the mathematics classroom. International Journal of Computers for Mathematical Learning, 1(2), 189–195. Retrieved from http://dx.doi.org/10.1007/BF00571078

Sfard, A., & Thompson, P. (1994). Problems of reification: Representations and mathematical objects. In Proceedings of the sixteenth annual meeting of the North American chapter of the international group for the psychology of mathematics education (Vol. 1, pp. 3–34).

Shaffer, D., & Kaput, J. (1998). Mathematics and virtual culture: An evolutionary perspective on technology and mathematics education. Educational Studies in Mathematics, 37(2), 97–119.

Shah, P., & Hoeffner, J. (2002). Review of Graph Comprehension Research: Implications for Instruction. Educational Psychology Review, 14(1), 47–69. http://doi.org/10.1023/A:1013180410169

Shavelson, R. J., & Towne, L. (Eds.). (2002). Scientific research in education. Washington: National Academy Press.

Shavelson, R., Phillips, D., Towne, L., & Feuer, M. (2003). On the science of education design studies. Educational Researcher, 32(1), 25–28. Retrieved from http://www.stanford.edu/dept/SUSE/SEAL/Reports_Papers/methods_papers/On%20the%20Science%20of%20Ed%20Design%20Studies_ER.pdf

Sherin, B. L. (2000). How students invent representations of motion. A genetic account. Journal of Mathematical Behavior, 19, 399–441.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

Simon, M. A. (1995). Reconstructing Mathematics Pedagogy from a Constructivist Perspective. Journal for Research in Mathematics Education, 26(2), 114–145. Retrieved from http://www.jstor.org/stable/749205

Simon, M. A. (2006). Key Developmental Understandings in Mathematics: A Direction for Investigating and Establishing Learning Goals. Mathematical Thinking and Learning, 8(4), 359–371. http://doi.org/10.1207/s15327833mtl0804_1

Simon, M. A., & Tzur, R. (2004). Explicating the Role of Mathematical Tasks in Conceptual Learning: An Elaboration of the Hypothetical Learning Trajectory. Mathematical Thinking and Learning, 6(2), 91–104. http://doi.org/10.1207/s15327833mtl0602_2

Slavin, R. E., Hurley, E. A., & Chamberlain, A. (2003). Cooperative Learning and Achievement: Theory and Research. In W. M. Reynolds & G. E. Miller (Eds.), Handbook of Psychology. Educational Psychology (Vol. 7, pp. 177–198). John Wiley & Sons, Inc. http://doi.org/10.1002/0471264385.wei0709

SLO. (2006). Herziene kerndoelen basisonderwijs. Retrieved from http://www.slo.nl/primair/kerndoelen/Kerndoelen.doc/download

SLO. (2009). TULE inhouden en activiteiten. Retrieved from http://tule.slo.nl

Smaling, A. (1990). Enige aspecten van kwalitatief onderzoek en het klinisch interview (Some aspects of qualitative research and the clinical interview). Tijdschrift Voor Nascholing En Onderzoek van Het Reken-Wiskundeonderwijs, 3(8), 4–10.

Smaling, A. (1992). Varieties of methodological intersubjectivity — the relations with qualitative and quantitative research, and with objectivity. Quality and Quantity, 26(2), 169–180. http://doi.org/10.1007/BF02273552

Smaling, A. (2003). Inductive, analogical, and communicative generalization. International Journal of Qualitative Methods, 2(1), 52–67. Retrieved from http://www.ualberta.ca/~iiqm/backissues/2\_1/pdf/smaling.pdf

Smit, J., AA van Eerde, H., & Bakker, A. (2012). A conceptualisation of whole-class scaffolding. British Educational Research Journal. http://doi.org/10.1002/berj.3007

Smith, J., & Thompson, P. (2007). Quantitative reasoning and the development of algebraic reasoning. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 95–132). Erlbaum. Retrieved from http://www.pat-thompson.net/PDFversions/2006SmithThompsonEarlyAlg.pdf

Smith, T. M. (1961). Some uses of graphing before Descartes. The Mathematics Teacher, 54(7), pp. 565–567. Retrieved from http://www.jstor.org/stable/27956478

Soloway, E. (1993). Should we teach students to program? Communications of the ACM, 36(10), 21–24.

Songer, N., & Gotwals, A. (2012). Guiding explanation construction by children at the entry points of learning progressions. Journal of Research in Science Teaching, 49, 141–165.

Speiser, B., & Walter, C. (1994). Catwalk: First-semester calculus. The Journal of Mathematical Behavior, 13(2), 135–152. http://doi.org/10.1016/0732-3123(94)90018-3

Speiser, B., & Walter, C. (1996). Second catwalk: Narrative, context, and embodiment. The Journal of Mathematical Behavior, 15(4), 351–371. http://doi.org/10.1016/S0732-3123(96)90021-8

Speiser, B., & Walter, C. (1997). Performing algebra: Emergent discourse in a fifth-grade classroom. The Journal of Mathematical Behavior, 16(1), 39–49. http://doi.org/10.1016/S0732-3123(97)90006-7

Speiser, B., Walter, C., & Maher, C. (2003). Representing motion: An experiment in learning. Journal of Mathematical Behavior, 22(1), 1–35.

Sriraman, B., & English, L. (2005). Theories of Mathematics Education: A global survey of theoretical frameworks/trends in mathematics education research. ZDM, 37(6), 450–456. Retrieved from http://dx.doi.org/10.1007/BF02655853

Sriraman, B., & English, L. (2010). Surveying theories and philosophies of mathematics education. Advances in Mathematics Education, 7–32.

Stake, R. (1978). The case study method in social inquiry. Educational Researcher, 7(2), 5–8. Retrieved from http://education.illinois.edu/CIRCE/Publications/1978\_Stake.pdf

Steffe, L. (1991a). Operations that generate quantity. Learning and Individual Differences, 3(1), 61–82. http://doi.org/10.1016/1041-6080(91)90004-K

Steffe, L. (1991b). The Constructivist Teaching Experiment: Illustrations and Implications. In A. Bishop & E. Glasersfeld (Eds.), Radical Constructivism in Mathematics Education (Vol. 7, pp. 177–194). Springer Netherlands. Retrieved from http://dx.doi.org/10.1007/0-306-47201-5_9

Steffe, L., & Thompson, P. (2000a). Interaction or Intersubjectivity? A Reply to Lerman. Journal for Research in Mathematics Education, 31(2), pp. 191–209. Retrieved from http://www.jstor.org/stable/749751

Steffe, L., & Thompson, P. (2000b). Teaching experiment methodology: Underlying principles and essential elements. In R. Lesh & A. Kelly (Eds.), Research desing in mathematics and science education (pp. 267–306). Retrieved from http://www.coe.tamu.edu/~rcapraro/Articles/Teaching%20Experiments/TchExp%20Methodology%20Underlying%20Principles%20and%20Essential%20Elements.pdf

Stegmann, K., Wecker, C., Weinberger, A., & Fischer, F. (2012). Collaborative argumentation and cognitive elaboration in a computer-supported collaborative learning environment. Instructional Science, 40(2), 297–323.

Stein, M., Baxter, J., & Leinhardt, G. (1990). Subject-matter knowledge and elementary instruction: A case from functions and graphing. American Educational Research Journal, 27(4), 639. Retrieved from https://www.msu.edu/user/mkennedy/TQQT/PDFs/SteinBL90.pdf

Stephan, M. (2003). Chapter 2: Reconceptualizing Linear Measurement Studies: The Development of Three Monograph Themes. In Supporting Students’ Development of Measuring Conceptions: Analyzing Students’ Learning in Social Context (Vol. 12, pp. pp. 17–35). Retrieved from http://www.jstor.org/stable/30037719

Stephan, M., & Akyuz, D. (2012). A Proposed Instructional Theory for Integer Addition and Subtraction. Journal for Research in Mathematics Education, 43(4), 428–464.

Stephan, M., & Cobb, P. (2003). Chapter 3: The Methodological Approach to Classroom-Based Research. In Journal for Research in Mathematics Education. Monograph (Vol. 12, pp. pp. 36–50). National Council of Teachers of Mathematics. Retrieved from http://www.jstor.org/stable/30037720

Stephan, M., Underwood-Gregg, D., & Yackel, E. (2014). Guided Reinvention: What Is It and How Do Teachers Learn This Teaching Approach?. In Y. Li, E. A. Silver, & S. Li (Eds.), Transforming Mathematics Instruction: Multiple Approaches and Practices. Springer. http://doi.org/10.1007/978-3-319-04993-9_4

Stephens, A. (2005). Developing Students’ Understandings of Variable. Mathematics Teaching in the Middle School, 11(2), 96. Retrieved from http://labweb.education.wisc.edu/knuth/taar/papers_rep_pub/MTMS_variable.pdf

Stigler, J., & Thompson, B. (2009). Thoughts on Creating, Accumulating, and Utilizing Shareable Knowledge to Improve Teaching. Elementary School Journal, 109(5), 16.

Stratford, S. (1997). A review of computer-based model research in precollege science classrooms. Journal of Computers in Mathematics and Science Teaching, 16(1), 3–23.

Streefland, L. (1981). Zoals eenvoudig valt in te zien. Nieuwe Wiskrant, 1, 3–7. Retrieved from http://www.fi.uu.nl/wiskrant/artikelen/artikelen00-10/000/000_streefland.pdf

Streefland, L. (1985). Wiskunde als activiteit en de realiteit als bron. Nieuwe Wiskrant, 5(1), 60–67.

Strijbos, J., & Weinberger, A. (2010). Emerging and scripted roles in computer-supported collaborative learning. Computers in Human Behavior, 26(4), 491–494.

Strijbos, J., Martens, R., & Jochems, W. (2004). Designing for interaction: Six steps to designing computer-supported group-based learning. Computers & Education, 42(4), 403–424.

Stroup, W. (2002). Understanding qualitative calculus: A structural synthesis of learning research. International Journal of Computers for Mathematical Learning, 7(2), 167–215. Retrieved from http://www.springerlink.com/content/k211l7w34v628740/fulltext.pdf

Stroup, W. (2005). Learning the basics with calculus. Journal of Computers in Mathematics and Science Teaching, 24(2), 179–196. Retrieved from https://uteach.utexas.edu/sites/default/files/Basics%20with%20Calculus.pdf

Stump, S. L. (2001). High School Precalculus Students’ Understanding of Slope as Measure. School Science and Mathematics, 101(2), 81–89. http://doi.org/10.1111/j.1949-8594.2001.tb18009.x

Stylianou, D. (2011). An examination of middle school students’ representation practices in mathematical problem solving through the lens of expert work: towards an organizing scheme. Educational Studies in Mathematics, 76(3), 265–280. http://doi.org/10.1007/s10649-010-9273-2

Suppes, P. (1966). The Uses of Computers in Education. Scientific American, 215(3), 206–220. Retrieved from http://suppes-corpus.stanford.edu/articles/comped/67.pdf

Swan, M. (Ed.). (1985). The Language of Functions and Graphs: An examination module for secondary schools. Shell Centre for Mathematical Education. Retrieved from http://www.mathshell.com/publications/tss/lfg/lfg_teacher.pdf

Sweller, J., Merrienboer, J. van, & Paas, F. (1998). Cognitive Architecture and Instructional Design. Educational Psychology Review, 10(3), 251–296. http://doi.org/10.1023/A:1022193728205

Tall, D. (1981). Comments on the difficulty and validity of various approaches to the calculus. For the Learning of Mathematics, 16–21.

Tall, D. (1982). Elementary axioms and pictures for infinitesimal calculus. Bulletin of the IMA, 18, 43–48.

Tall, D. (1986). Building and testing a cognitive approach to the calculus using interactive computer graphics (PhD thesis). University of Warwick.

Tall, D. (1991). The Psychology of Advanced Mathematical Thinking. In D. Tall (Ed.), Advanced Mathematical Thinking (Vol. 11, pp. 3–21). Springer Netherlands. http://doi.org/10.1007/0-306-47203-1_1

Tall, D. (1993a). Interrelationships Between Mind and Computer: Processes, Images, Symbols. In D. Ferguson (Ed.), Advanced Educational Technologies for Mathematics and Science (Vol. 107, pp. 385–413). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-662-02938-1_14

Tall, D. (1993b). Students’ difficulties in calculus. In Proceedings of Working Group 3 on Students’ Difficulties in Calculus, ICME-7 1992, Québec, Canada (pp. 13–28). Retrieved from http://www.warwick.ac.uk/staff/David.Tall/pdfs/dot1993k-calculus-wg3-icme.pdf

Tall, D. (1997). Functions and calculus. In A. J. Bishop, M. (. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (pp. 289–325). Kluwer, Dordrecht. Retrieved from http://www.warwick.ac.uk/staff/David.Tall/pdfs/dot1997a-functions-calculus.pdf

Tall, D. (2000). Technology and versatile thinking in mathematics. In Proceedings of TIME 2000 an International Conference on Technology in Mathematics Education (pp. 33–50). Retrieved from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2000g-time2000.pdf

Tall, D. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus. ZDM, 41(4), 481–492. http://doi.org/10.1007/s11858-009-0192-6

Tall, D. (2010). A Sensible approach to the Calculus. Retrieved from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2012x-sensible-calculus-for-publication.pdf

Tall, D. (2013). The Evolution of Technology and the Mathematics of Change and Variation: Using Human Perceptions and Emotions to Make Sense of Powerful Ideas. In S. Hegedus & J. Roschelle (Eds.), The SimCalc Vision and Contributions (pp. 449–461). Springer Netherlands. http://doi.org/10.1007/978-94-007-5696-0_25

Tall, D. (in press). The evolution of technology and the mathematics of change and variation. In S. Hegedus & J. Roschelle (Eds.),.

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169. http://doi.org/10.1007/BF00305619

Tall, D., Gray, E., Ali, M., Crowley, L., DeMarois, P., McGowen, M., … Yusof, Y. (2001). Symbols and the bifurcation between procedural and conceptual thinking. Canadian Journal of Science, Mathematics and Technology Education, 1(1), 81–104. http://doi.org/10.1080/14926150109556452

Tall, D., Smith, D., & Piez, C. (2008). Technology and calculus. In M. Heid & G. Blume (Eds.), Research on Technology and the Teaching and Learning of Mathematics (Vol. 1, pp. 207–258). Retrieved from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2008f-piez-smith-tall-calculus.pdf

Tall, D., Thomas, M., Davis, G., Gray, E., & Simpson, A. (1999). What Is the Object of the Encapsulation of a Process? The Journal of Mathematical Behavior, 18(2), 223–241. http://doi.org/10.1016/S0732-3123(99)00029-2

Taşar, M. (n.d.). What part of the concept of acceleration is difficult to understand: the mathematics, the physics, or both? ZDM, 1–14.

Taylor-Cox, J. (2003). Algebra in the Early Years? Young Children, 58, 14–21. Retrieved from http://earlychildhoodconnections.com/documents/Algebra.pdf

Teasley, S. (1995). The role of talk in children’s peer collaborations. Developmental Psychology, 31(2), 207.

Terwel, J., Oers, B. van, Dijk, I. van, & Eeden, P. van den. (2009). Are representations to be provided or generated in primary mathematics education? Effects on transfer. Educational Research and Evaluation, 15(1), 25–44. http://doi.org/10.1080/13803610802481265

Teuscher, D., & Reys, R. (2010). Slope, Rate of Change, and Steepness: Do Students Understand These Concepts?. Mathematics Teacher, 103(7), 6. Retrieved from http://mail.ottawacatholicschools.ca/~Mark.Couturier@ottawacatholicschools.ca/FOV1-000670D7/Slope%20and%20rate%20of%20change.pdf?FCItemID=S0A0CB01E

The Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8.

Thomas, M. O., & Hong, Y. Y. (2001). Representations as conceptual tool: Process and structural perspectives. In PME CONFERENCE (Vol. 4, pp. 4–257).

Thompson, P. (1991). Getting ahead: with theories. I have a theory about this. In Proceedings of the Annual Meeting of the North American Chapter, International Group for the Psychology of Mathematics Education: Plenary papers (pp. 240–245).

Thompson, P. (1993). Quantitative reasoning, complexity, and additive structures. Educational Studies in Mathematics, 25(3), 165–208.

Thompson, P. (1994a). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26(2), 229–274.

Thompson, P. (1994b). Students, functions, and the undergraduate curriculum. In Research in collegiate mathematics education, I: Issues in Mathematics Education (Vol. 4, pp. 21–44). Providence: American Mathematical Society. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.3807&rep=rep1&type=pdf

Thompson, P. (1994c). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 179–234). Albany: SUNY Press. Retrieved from http://pat-thompson.net/PDFversions/1994ConceptSpeedRate.pdf

Thompson, P. (2002). Didactic objects and didactic models in radical constructivism. In K. Gravemeijer, R. Lehrer, H. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling, and tool use in mathematics education (Vol. 30, pp. 197–220). Retrieved from http://pat-thompson.net/PDFversions/2002DidacticObjs.pdfke

Thompson, P. (2008a). Conceptual analysis of mathematical ideas: Some spadework at the foundation of mathematics education. In Proceedings of the annual meeting of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 45–64). Retrieved from http://patthompson.net/PDFversions/2008ConceptualAnalysis.pdf

Thompson, P. (2008b). Epistemology, ontology, and method: comments on Tiberghien’s and Dreyfus’ paper.

Thompson, P. (2011). Quantitative reasoning and mathematical modeling. In L. Hatfield, S. Chamberlain, & S. Belbase (Eds.), New perspectives and directions for collaborative research in mathematics education (pp. 33–57).

Thompson, P. (2012). Advances in research on quantitative reasoning. In R. Mayes, R. Bonillia, L. L. Hatfield, & S. Belbase (Eds.), Quantitative reasoning and Mathematical Modeling: A Driver for STEM Integrated Education and Teaching in Context (pp. 143–148). Retrieved from http://www.uwyo.edu/wisdome/_files/documents/thompson.pdf

Thompson, P. (2013). In the absence of meaning…. In Vital directions for mathematics education research (pp. 57–93). Retrieved from http://pat-thompson.net/PDFversions/2013AbsenceMeaning.pdf

Thompson, P., & Thompson, A. (1994). Talking about rates conceptually, part I: a teacher’s struggle. Journal for Research in Mathematics Education, 25(3), 279–303.

Thompson, P., & Thompson, A. (1996). Talking about rates conceptually, part II: mathematical knowledge for teaching. Journal for Research in Mathematics Education, 27(1), 2–24.

Thompson, P., Byerley, C., & Hatfield, N. (2013). A Conceptual Approach to Calculus Made Possible by Technology. Computers in the Schools, 30(1-2), 124–147. http://doi.org/10.1080/07380569.2013.768941

Tilling, L. (1975). Early Experimental Graphs. The British Journal for the History of Science, 8(3), pp. 193–213. Retrieved from http://www.jstor.org/stable/4025556

Tinker, R. (1999). New technology bumps into an old curriculum. Retrieved from http://www.concord.org/library/1999winter/newtechnology.html

Traianou, A. (2006). Teachers’ Adequacy of Subject Knowledge in Primary Science: Assessing constructivist approaches from a sociocultural perspective. International Journal of Science Education, 28(8), 827–842. http://doi.org/10.1080/09500690500404409

Treffers, A. (1978). Wiskobas doelgericht. Een metode van doelbeschrijving van het wiskundeonderwijs volgens wiskobas. Utrecht: IOWO.

Treffers, A. (1993). Wiskobas and Freudenthal realistic mathematics education. Educational Studies in Mathematics, 25(1-2), 89–108. http://doi.org/10.1007/BF01274104

Treffers, A. (2005). De (on) navolgbare Freudenthal. Panama-Post, 24(3), 135–144. Retrieved from http://www.fisme.science.uu.nl/publicaties/literatuur/6644.pdf

Trninic, D., & Abrahamson, D. (2011). Emergent ontology in embodied interaction: automated feedback as conceptual placeholder. In L. Wiest & T. Lamberg (Eds.), Proceedings of the 33rd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education.

Trowbridge, D. E., & McDermott, L. C. (1981). Investigation of student understanding of the concept of acceleration in one dimension. American Journal of Physics, 49(3), 242–253. http://doi.org/10.1119/1.12525

Tversky, B. (2002). What do Sketches say about Thinking. In 2002 AAAI Spring Symposium, Sketch Understanding Workshop, Stanford University, AAAI Technical Report SS-02-08. Retrieved from http://www.aaai.org/Papers/Symposia/Spring/2002/SS-02-08/SS02-08-022.pdf

Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: can it facilitate? International Journal of Human-Computer Studies, 57(4), 247–262.

Tversky, B., Tversky, B., & Tvesky, B. (1999). What does drawing reveal about thinking. In In (pp. 93–101).

Vahey, P., Lara-Meloy, T., & Knudsen, J. (2009). Meeting the needs of diverse student populations: Findings from the Scaling Up SimCalc project. In Proceedings of the 31st annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Atlanta, GA: Georgia State University (pp. 416–424). Retrieved from http://www.pmena.org/2009/proceedings/EQUITY%20AND%20DIVERSITY%20ISSUES/equityRR369979.pdf

Van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (2006a). Educational design research. Routledge London, New York. Retrieved from http://www.fi.uu.nl/publicaties/literatuur/EducationalDesignResearch.pdf

Van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (2006b). Introducing educational design research. In J. Van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research. Routledge London, New York. Retrieved from http://www.fi.uu.nl/publicaties/literatuur/EducationalDesignResearch.pdf

Van den Heuvel-Panhuizen, M., & Drijvers, P. (2001). Realistic Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education. Springer. Retrieved from http://www.staff.science.uu.nl/~heuve108/download/Norway/01_RME/VdHeuvel-Drijvers_in%20press_ENCYCLOPEDIA-Realistic%20Mathematics%20Education.pdf

Van den Heuvel-Panhuizen, M., & Wijers, M. (2005). Mathematics standards and curricula in the Netherlands. ZDM, 37(4), 287–307. Retrieved from http://www.fisme.uu.nl/publicaties/literatuur/6663.pdf

Van Dooren, W., & Greer, B. (2010). Students’ Behavior in Linear and Non-linear Situations. Mathematical Thinking and Learning, 12(1), 1–3.

Van Dooren, W., Ebersbach, M., & Verschaffel, L. (2010). Over rekenen, doen en weten. De ontwikkeling van schoolse, impliciete en expliciete kennis over beweging op een hellend vlak. Tijdschrift Voor Didactiek Der Beta-Wetenschappen, 27(1 & 2), 21–35.

Van Driel, J., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141–1153.

Van Someren, M., Barnard, Y., & Sandberg, J. (1994). The think aloud method: A practical guide to modelling cognitive processes. London: Academic Press. Retrieved from http://staff.science.uva.nl/~maarten/Think-aloud-method.pdf

Vinner, S. (1997). The pseudo-conceptual and the pseudo-analytical thought processes in mathematics learning. Educational Studies in Mathematics, 34(2), 97–129.

Vogel, M., Girwidz, R., & Engel, J. (2007). Supplantation of mental operations on graphs. Computers & Education, 49(4), 1287–1298.

Vollrath, H.-J. (1989). Funktionales Denken. Journal Für Mathematik-Didaktik, 10(1), 3–37. http://doi.org/10.1007/BF03338719

Von Glasersfeld, E. (1984). An introduction to radical constructivism. In P. Watzlawick (Ed.), The invented reality (pp. 17–40). New York: Norton. Retrieved from http://anti-matters.org/ojs/index.php/antimatters/article/view/88/81

VTB-Pro. (n.d.). Uitwerking van het Theoretisch Kader voor Professionalisering van Leerkrachten op het Gebied vna Wetenschap en Techniek. Retrieved from http://www.vtbpro.nl//docs/VTB-Pro/Theoretisch%20Kader%20VTB-Pro.doc.pdf

Vygotsky, L. (1986). Thought and language. Cambridge, Massachusetts: The MIT Press.

Wainer, H. (1992). Understanding Graphs and Tables. Educational Researcher, 21(1), 14–23. http://doi.org/10.3102/0013189X021001014

Waldrip, B., Prain, V., & Carolan, J. (2010). Using Multi-Modal Representations to Improve Learning in Junior Secondary Science. Research in Science Education, 40(1), 65–80. http://doi.org/10.1007/s11165-009-9157-6

Walker, R. (2011). Design-Based Research. In L. Markauskaite, P. Freebody, & J. Irwin (Eds.), Methodological Choice and Design (Vol. 9, pp. 51–56). Springer Netherlands. Retrieved from http://dx.doi.org/10.1007/978-90-481-8933-5_4

Wallis, C., & Steptoe, S. (2006). How to bring our schools out of the 20th century. Time Magazine, 168(25), 50–56.

Watson, D. (2001). Pedagogy before technology: Re-thinking the relationship between ICT and teaching. Education and Information Technologies, 6(4), 251–266.

Webb, M. (2008). Impact of IT on science education. International Handbook of Information Technology in Primary and Secondary Education, 133–148.

Webb, N., & Mastergeorge, A. (2003). Promoting effective helping behavior in peer-directed groups. International Journal of Educational Research, 39(1), 73–97.

Wegerif, R. (1996). Collaborative learning and directive software. Journal of Computer Assisted Learning, 12(1), 22–32.

Wegerif, R. (2002). Literature review in thinking skills, technology and learning literature review in thinking skills, technology and learning: a report for futurelab. Futurelab. Retrieved from http://archive.futurelab.org.uk/resources/documents/lit_reviews/Thinking_Skills_Review.pdf

Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71–95.

Westra, R., Savelsbergh, E., Kortland, K., Prins, G., & Mooldijk, A. (n.d.). Leren door zelf modelleren: constructief en uitdagend onderwijs. Retrieved from http://www.cdbeta.uu.nl/vo/modelleren/literatuur/modelleer_NVOX.pdf

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through constructing and testing computational theories—an embodied modeling approach. Cognition and Instruction, 24(2), 171–209. Retrieved from http://ccl.sesp.northwestern.edu/papers/2006/Thinking_Like_a_Wolf(1).pdf

Wilhelm, J., & Confrey, J. (2003). Projecting rate of change in the context of motion onto the context of money. International Journal of Mathematical Education in Science and Technology, 34(6), 887–904.

Wilkening, F., & Huber, S. (2002). Children’s intuitive physics. In U. Goswami (Ed.), Blackwell Handbook of Childhood Cognitive Development (pp. 349–370).

Wilkerson-Jerde, M., & Wilensky, U. (2010). Seeing change in the world from different levels: understanding the mathematics of complex systems, 190–192. Retrieved from http://portal.acm.org/citation.cfm?id=1854509.1854601

Willoughby, S. (1997). Functions from kindergarten through sixth grade. Teaching Children Mathematics, 3, 314–318. Retrieved from http://sdcounts.tie.wikispaces.net/file/view/functions+from+Kto6th.pdf/61212116/functions%20from%20Kto6th.pdf

Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967.

Wing, J. (2010). Computational Thinking: What and Why? Retrieved from http://www.exploringcs.org/wp-content/uploads/2010/09/Wing-CT-Article.pdf

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. Retrieved from http://livinglab.commons.gc.cuny.edu/files/2011/01/Wing061.pdf

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. http://doi.org/10.1098/rsta.2008.0118

Woodgate, D., Fraser, D., & Crellin, D. (2007). Providing an “Authentic” Scientific Experience: Technology, Motivation and Learning.

Woodruff, E., & Meyer, K. (1997). Explanations from intra- and inter-group discourse: Students building knowledge in the science classroom. Research in Science Education, 27(1), 25–39. http://doi.org/10.1007/BF02463030

Wu, H., & Krajcik, J. (2006). Inscriptional practices in two inquiry-based classrooms: A case study of seventh graders’ use of data tables and graphs. Journal of Research in Science Teaching, 43(1), 63–95.

Yackel, E., & Cobb, P. (1996). Sociomathematical Norms, Argumentation, and Autonomy in Mathematics. Journal for Research in Mathematics Education, 27(4), 458–477. Retrieved from http://www.jstor.org/stable/749877

Yavuz, İ. (2010). What does a graphical representation mean for students at the beginning of function teaching? International Journal of Mathematical Education in Science and Technology, 41(4), 467–485. http://doi.org/10.1080/00207390903477442

Yelland, N. (1995). Mindstorms or a storm in a teacup? A review of research with Logo. International Journal of Mathematical Education in Science and Technology, 26(6), 853–869.

Yelland, N. (2005). The future is now: A review of the literature on the use of computers in early childhood education (1994-2004). AACE Journal, 13(3), 201–232. Retrieved from http://www.editlib.org/f/6038

Yelland, N., Australia. Dept. of Education, T., & Affairs, Y. (2001). Teaching and learning with information and communication technologies (ICT) for numeracy in the early childhood and primary years of schooling. Dept. of Education, Training; Youth Affairs. Retrieved from http://www.dest.gov.au/archive/Research/fellowship/docs/Nicola_Yelland/Yelland_report.pdf

Yeo, S., Loss, R., Zadnik, M., Harrison, A., & Treagust, D. (2004). What do students really learn from interactive multimedia? A physics case study. American Journal of Physics, 72(10), 1351–1358. http://doi.org/10.1119/1.1748074

Yerushalmy, M. (1997). Mathematizing verbal descriptions of situations: A language to support modeling. Cognition and Instruction, 15(2), 207–264.

Yin, R. (1989). Case study research: Design and methods (Revised edition, Vol. 5). Newbury Park: SAGE publications.

Youschkevitch, A. (1976). The concept of function up to the middle of the 19th century. Archive for History of Exact Sciences, 16(1), 37–85. http://doi.org/10.1007/BF00348305

Yusof, Y., & Tall, D. (1996). Conceptual and procedural approaches to problem solving. In Proceedings of PME 20, Valencia 1996 (Vol. 4, pp. 3–10). Retrieved from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1996g-yusof-pme.pdf

Zacks, J., & Tversky, B. (1999). Bars and lines: A study of graphic communication. Memory & Cognition, 27(6), 1073–1079. http://doi.org/10.3758/BF03201236

Zacks, J., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130(1), 29.

Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate Mathematics Education. IV (Vol. 8, pp. 103–127).

Zaritsky, R., Kelly, A., Flowers, W., Rogers, E., & O’Neill, P. (2003). Clinical design sciences: A view from sister design efforts. Educational Researcher, 32(1), 32–34. Retrieved from https://www.aera.net/uploadedFiles/Journals\_and\_Publications/Journals/Educational\_Researcher/3201/3201\_Zaritsky.pdf

Zbiek, R. M., Heid, M. K., & Blume, G. (2007). Research on technology in mathematics education: the perspecive of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 1169–1207).

Zhou, Z., Peverly, S. T., Boehm, A. E., & Chongde, L. (2000). American and Chinese children’s understanding of distance, time, and speed interrelations. Cognitive Development, 15(2), 215–240. http://doi.org/10.1016/S0885-2014(00)00031-9

Zuccheri, L., & Zudini, V. (2014). History of Teaching Calculus. In A. Karp & G. Schubring (Eds.), Handbook on the History of Mathematics Education (pp. 493–513). Springer New York. http://doi.org/10.1007/978-1-4614-9155-2_24

(n.d.-e).